• Title/Summary/Keyword: apoptotic cells

Search Result 2,161, Processing Time 0.024 seconds

The Functional Role of Lysosomes as Drug Resistance in Cancer (항암제 내성에 대한 라이소좀의 역할)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • Lysosomes are organelles surrounded by membranes that contain acid hydrolases; they degrade proteins, macromolecules, and lipids. According to nutrient conditions, lysosomes act as signaling hubs that regulate intracellular signaling pathways and are involved in the homeostasis of cells. Therefore, the lysosomal dysfunction occurs in various diseases, such as lysosomal storage disease, neurodegenerative diseases, and cancers. Multiple forms of stress can increase lysosomal membrane permeabilization (LMP), resulting in the induction of lysosome-mediated cell death through the release of lysosomal enzymes, including cathepsin, into the cytosol. Here we review the molecular mechanisms of LMP-mediated cell death and the enhancement of sensitivity to anticancer drugs. Induction of partial LMP increases apoptosis by releasing some cathepsins, whereas massive LMP and rupture induce non-apoptotic cell death through release of many cathepsins and generation of ROS and iron. Cancer cells have many drug-accumulating lysosomes that are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. Lysosomal sequestration of hydrophobic weak base anticancer drugs can have a significant impact on their subcellular distribution. Lysosome membrane damage by LMP can overcome resistance to anticancer drugs by freeing captured hydrophobic weak base drugs from lysosomes. Therefore, LMP inducers or lysosomotropic agents can regulate lysosomal integrity and are novel strategies for cancer therapy.

Tat-Thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling

  • Hyun Ju Cha;Won Sik Eum;Gi Soo Youn;Jung Hwan Park;Hyeon Ji Yeo;Eun Ji Yeo;Hyun Jung Kwon;Lee Re Lee;Na Yeon Kim;Su Yeon Kwon;Yong-Jun Cho;Sung-Woo Cho;Oh-Shin Kwon;Eun Jeong Sohn;Dae Won Kim;Duk-Soo Kim;Yu Ran Lee;Min Jea Shin;Soo Young Choi
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.234-239
    • /
    • 2023
  • Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury.

Relationships of the Lithium-Induced Growth Inhibition of C6 Rat Glioma Cell to Expression of the Insulin-like Growth Factor System Components (C6 Rat Glioma Cell에서 리튬에 의한 성장 억제와 Insulin-like Growth Factor System Components의 발현과의 관계)

  • Kim, I.A.;Jin, E.J.;Cho, E.J.;Sohn, S.H.;Lee, C.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.563-570
    • /
    • 2004
  • The insulin-like growth factor(IGF) system, consisting of IGFs-I and -II ligands and their receptors and six IGF-binding proteins(IGFBPs), plays an important role in survival, proliferation and differentiation of a variety of cell types. Lithium is a known modulator of survival and proliferation of many cell types in vitro. The present study was undertaken to investigate the relationship between LiCI-induced changes in cell survival and growth and the expression of the IGF system components in C6 rat glioma cell line which, besides IGF-I and its receptor, is known to express IGFBP-3 as its major IGF carrier. When C6 cells were cultured for 24h in the absence or presence of 2mM or 5mM LiCl in a 10% serwn-containing medium, the viability and the number of cells were not affected by added lithium. In 72-h culture, however, C6 cells clearly exhibited a dose-dependent response to added LiCl. The cells cultured for 72h in the presence of 0, 2mM and 5mM LiCl exhibited a typical mitotic, a growth-arrested and an apoptotic appearances, respectively. Moreover, the apoptotic cells were accompanied by reduced expression of IGF-I, IGF-I receptor and IGFBP-3 as examined by semi-quantitative reverse transcription-polymerase chain reaction. Interestingly, blockade of IGFBP-3 mRNA translation by addition of 101${\mu}M$ IGFBP-3 anti-sense oligodeoxyribonucleotide in serum-free, 24-h culture resulted in a decrease in the number of cells as well as relative abundance of the target mRNA. In summary, results suggest that the cytotoxic effect of lithium in C6 cell is likely to be mediated, in part, by suppression by this agent of the expression of the IGF system components. In this regard, IGFBP-3 may play at least a 'permissive' role in normal proliferation of this cell.

Expression of Cell Cycle Related Genes in HL60 Cells Undergoing Apoptosis by X-irradiation (HL60 세포주에서 방사선 조사에 의한 Apoptosis와 세포 주기 관련 유전자의 발현 변화)

  • Kim, Jin-Hee;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.377-388
    • /
    • 1998
  • Purpose : To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. Material and Methods : HL-60 cell line (promyelocytic leukemia cell line) was grown in culture media and irradiated with 8 Gr by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin Dl, cyclin E, cdc2, CDK2, CDK4, $p16^{INK4a}$, $p21^{WAF1}$, $p27^{KIP1}$, E2F, PCNA and Rb). Results : X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of Phosphorylated retinoblastoma proteins (ppRb). Cyclin Dl, PCNA, CDC2, CDK4 and $p16^{INK4a}$ protein underwent no significant change at any times after irradiation. There was not detected $p21^{WAF1}$ and $p27^{KIP1}$ protein. Cyclin A, B, C mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin Dl mRNA increased immediately and then decreased at 48 h after radiation. After radiation, cyclin E mRNA decreased with the lapse of time. CDK2 mRNA decreased at 3h and increased at eh after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of $p16^{INK4a}$ and not detected in expressin of $p21^{WAF1}$ and $p27^{KIP1}$ mRNA. Conclusion : We suggest that entry into S phase may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced auoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of PRb protein are related with radiation induced apoptosis of HL60 cells and this may be associated with induction of E2F and cyclinE/CDK2. These results support that $p21^{WAF1}$ and $p27^{KIP1}$ are not related with radiation induced-apoptosis.

  • PDF

Effect of Radiation Dosage Changes on the Cell Viability and the Apoptosis Induction on Normal and Tumorigenic Cells (방사선의 선량변화가 수종의 정상세포와 종양세포주의 세포활성도와 apoptosis 유발에 미치는 영향)

  • Park In-Woo;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.435-449
    • /
    • 1999
  • Purpose : The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. Materials and Methods : The study. that was generated for two human normal cells(RHEK, HGF-l) and two human tumor cells(KB. HT-1080). was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5. 1, 2. 4. and 8Gy were applied to the cells. The two fractions of 1. 2. 4. and 8Gy were separated with a 4-hour time interval. The irradiation was done with 5.38Gy/min dose rate using Cs-137 irradiator at room temperature. Results and Conclusions : 1. In 3-day group. the cell viability of HGF-1 cell was significantly decreased at 2. 4 and 8Gy irradiation, the cell viability of KB cell was significantly decreased at 8Gy irradiation and the cell viability of HT-I080 cell was significantly decreased at 4 and 8Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2. 4 and 8Gy on HGF-1 cell. at 4 and 8Gy on HT-I080 cell. at 8Gy on KB cell. 4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8Gy irradiation. However, there was no correlation between cell viability and apoptosis. 5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  • PDF

Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs (포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로)

  • Lee, Hyo-Zhin;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Two-pore domain $K^+(K_{2P})$ channels contribute to setting the resting membrane potential in excitable and nonexcitable cells. However, the cellular or tissue distribution and function of $K_{2P}$ channels expressed in mammalian germ cells and reproductive organs have not yet been reviewed by researchers. In this review, we focus on expression, localization and expected properties of $K_{2P}$ channels in germ cells and reproductive organs. The $K_{2P}$ channels are expressed in human cytotrophoblast cells, myometrium, placental vascular system, uterine smooth muscle, and pregnant term tissue, suggesting that $K_{2P}$ channels might be involved in the processes of pregnance. The $K_{2P}$ channels are also expressed in mouse zygotes, monkey sperm, ovary, testis, germ cells, and embryos of Korean cattle. Interestingly, $K_{2P}$ channels are modulated by changes in temperature and oxygen concentration which play an important role in embryonic development. Also, $K_{2P}$ channels are responsible for $K^+$ efflux during apoptotic volume decreases in mouse zygotes. These expression patterns and properties of the $K_{2P}$ channels in reproductive organs and germ cells are likely to help the understanding of ion channel-related function in reproductive physiology.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

Modulacon of Cell Cycle Control by Histone Deacetylase Inhibitor Trichostatin A in A549 Human Non-small Cell Lung Cancer Cells (인체폐암세포 A549의 세포주기 조절인자에 미치는 histone deacetylase inhibitor trichostatin A의 영향)

  • Hwang Ji Won;Kim Young Min;Hong Su Hyun;Choi Byung Tae;Lee Won Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.726-733
    • /
    • 2005
  • Histone deacetylase (HDAC) inhibitors target key steps of tumor development. They inhibit proliferation, induce differentiation and/or apoptotic cell death, and exhibit potent antimetastatic and antiangiogenic properties in cancer cells in vitro and in vivo. Although they are emerging as a promising new treatment strategy in malignancy, how they exert their effect on human non-small cell lung cancer cells is as yet unclear. The present study was undertaken to investiate the underlying mechanism of a HDAC inhibitor trichostatin A (TSA)-induced growth arrest and its effect on the cell cycle control gene products in a human lung carcinoma cell line A549. TSA treaoent induced the growth inhibition and morphological changes in a concentration-dependent manner. Treatment of A549 cells with TSA resulted in a concentration-dependent increased G1 (under 100 ng/ml) and/or G2/M (200 ng/ml) cell population of the cell cycle as determined by flow cytometry Moreover, 200 ng/ml TSA treatment significantly induced the population of sub-G1 cells (23.0 fold of control). This anti-proliferative effect of TSA was accompanied by a marked inhibition of cyclins, positive regulators of cell cycle progression, and cyclin-dependent kinases (Cdks) expression and concomitant induction of tumor suppressor p53 and Cdk inhibitors such as p21 and p27 Although further studies are needed, these findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of TSA in human lung carcinoma cells.

The Anticancer Effect of Extracts from Vitex rotundifolia on Human Colon Carcinoma Cell Lines (대장암 세포주에 대한 만형자(Vitex rotundifolia) 추출물의 항암 효과)

  • Jo, Kyung-Jin;Yoon, Mi-Young;Lee, Mi-Ra;Cha, Mi-Ran;Park, Hae-Ryong
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • This study was performed to investigate the cytotoxic activity from Vitex rotundifolia. V. rotundifolia was extracted with methanol, ethanol, and acetone, and then the cytotoxic effect of these extracts was measured by the MTT reduction assay and morphological assay on the HT-29 human colon carcinoma cells. Among the three extracts, the acetone extract showed the highest cytotoxic activity on the HT-29 cells in a dose-dependent manner with an $IC_{50}$ value of 10 ${\mu}g/ml$. The acetone extract was further fractionated sequentially with n-hexane, diethyl ether, ethyl acetate, and water layer according to the degree of polarity. The n-hexane layer among the fractioned layers showed inhibitory activity on the growth of HT-29 cells. In addition, n-hexane layer also showed the cytotoxic activity against SW620 human colon carcinoma cells. These result indicated that extracts of V. rotundifolia may contain bioactive materials and could be potential candidates as chemotherapeutic agents against human colon carcinoma cells.

Effects of Platycodon grandiflorum on the Induction of Autophagy and Apoptosis in HCT-116 Human Colon Cancer Cells (길경 추출물에 의한 HCT-116 대장암 세포주에서의 autophagy와 apoptosis 유발 효과)

  • Hong, Su Hyun;Park, Cheol;Han, Min Ho;Kim, Hong Jae;Lee, Moon Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1244-1251
    • /
    • 2014
  • Platycodon grandiflorum (PG) has been known to possess many biological effects, including anti-inflammatory and anti-allergy activity and anti-obesity and hyperlipidemia effects. However, little research has been conducted regarding its anticancer effects, with the exception of its ability to stimulate apoptosis in skin cells. There has also been no study regarding PG-induced autophagy. The modulation of autophagy is recognized as one of the hallmarks of cancer cells. Depending on the type of cancer and the context, autophagy can suppress or help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Therefore, the present study was designed to investigate whether or not extracts from PG-induced cell death were connected with autophagy and apoptosis in HCT-116 human colon cancer cells. PG stimulation decreased cell proliferation in a dose- and time-dependent manner and induced apoptosis, which was partially dependent on the activation of caspases. PG treatment also resulted in the formation of autophagic vacuoles simultaneously with regulation of autophagy-related genes. Interestingly, a PG-mediated apoptotic effect was further triggered by pretreatment with the autophagy inhibitors 3-methyladenin and bafilomycin A1. However, cell viability recovered quite well with bafilomycin A1 treatment. These findings show that PG treatment promotes both autophagy and apoptosis and that PG-induced autophagic response might play a role in the autophagic cell death of HCT-116 cells.