• Title/Summary/Keyword: apache spark

Search Result 58, Processing Time 0.022 seconds

Distributed Moving Objects Management System for a Smart Black Box

  • Lee, Hyunbyung;Song, Seokil
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2018
  • In this paper, we design and implement a distributed, moving objects management system for processing locations and sensor data from smart black boxes. The proposed system is designed and implemented based on Apache Kafka, Apache Spark & Spark Streaming, Hbase, HDFS. Apache Kafka is used to collect the data from smart black boxes and queries from users. Received location data from smart black boxes and queries from users becomes input of Apache Spark Streaming. Apache Spark Streaming preprocesses the input data for indexing. Recent location data and indexes are stored in-memory managed by Apache Spark. Old data and indexes are flushed into HBase later. We perform experiments to show the throughput of the index manager. Finally, we describe the implementation detail in Scala function level.

Performance Evaluation Between PC and RaspberryPI Cluster in Apache Spark for Processing Big Data (빅데이터 처리를 위한 PC와 라즈베리파이 클러스터에서의 Apache Spark 성능 비교 평가)

  • Seo, Ji-Hye;Park, Mi-Rim;Yang, Hye-Kyung;Yong, Hwan-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1265-1267
    • /
    • 2015
  • 최근 IoT 기술의 등장으로 저전력 소형 컴퓨터인 라즈베리파이 클러스터가 IoT 데이터 처리를 위해 사용되고 있다. IoT 기술이 발전하면서 다양한 데이터가 생성되고 있으며 IoT 환경에서도 빅데이터 처리가 요구되고 있다. 빅데이터 처리 프레임워크에는 일반적으로 하둡이 사용되고 있으며 이를 대체하는 솔루션으로 Apache Spark가 등장했다. 본 논문에서는 PC와 라즈베리파이 클러스터에서의 성능을 Apache Spark를 통해 비교하였다. 본 실험을 위해 Yelp 데이터를 사용하며 데이터 로드 시간과 Spark SQL을 이용한 데이터 처리 시간을 통해 성능을 비교하였다.

Design of Kubernetes cloud vulnerability diagnosis System using Apache Spark (Apache Spark를 활용한 쿠버네티스 클라우드 취약점 진단 시스템 설계)

  • Moon, Ju-Hyeon;Kim, Sang-Hoon;Shin, Yong-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.543-544
    • /
    • 2020
  • 최근 급증하는 클라우드 도입 정책에 비해 클라우드 취약점 진단 및 관리 기술은 상대적으로 미비하여 오픈소스로 사용되고 있는 클라우드 기술의 신규 취약점이 발생하고 있다. 본 논문에서는 Apache Spark를 활용한 쿠버네티스 클라우드 취악점 진단 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 활용하여 쿠버네티스 클라우드를 구성할 때 작성되는 Object Spec의 데이터 중 취약점을 유발하는 값을 진단 및 분석, 대응이 가능하도록 설계하였다.

  • PDF

Image Machine Learning System using Apache Spark and OpenCV on Distributed Cluster (Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경 대용량 이미지 머신러닝 시스템)

  • Hayoon Kim;Wonjib Kim;Hyeopgeon Lee;Young Woon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.33-34
    • /
    • 2023
  • 성장하는 빅 데이터 시장과 빅 데이터 수의 기하급수적인 증가는 기존 컴퓨팅 환경에서 데이터 처리의 어려움을 야기한다. 특히 이미지 데이터 처리 속도는 데이터양이 많을수록 현저하게 느려진다. 이에 본 논문에서는 Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경의 대용량 이미지 머신러닝 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 통해 분산 클러스터를 구성하며, OpenCV의 이미지 처리 알고리즘과 Spark MLlib의 머신러닝 알고리즘을 활용하여 작업을 수행한다. 제안하는 시스템을 통해 본 논문은 대용량 이미지 데이터 처리 및 머신러닝 작업 속도 향상 방법을 제시한다.

Real-Time Stock Price Prediction using Apache Spark (Apache Spark를 활용한 실시간 주가 예측)

  • Dong-Jin Shin;Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.

Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL (OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

Big Data Astronomy : Let's "PySpark" the Universe (빅데이터 천문학 : PySpark를 이용한 천문자료 분석)

  • Hong, Sungryong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2018
  • The modern large-scale surveys and state-of-the-art cosmological simulations produce various kinds of big data composed of millions and billions of galaxies. Inevitably, we need to adopt modern Big Data platforms to properly handle such large-scale data sets. In my talk, I will briefly introduce the de facto standard of modern Big Data platform, Apache Spark, and present some examples to demonstrate how Apache Spark can be utilized for solving data-driven astronomical problems.

  • PDF

Framework Implementation of Image-Based Indoor Localization System Using Parallel Distributed Computing (병렬 분산 처리를 이용한 영상 기반 실내 위치인식 시스템의 프레임워크 구현)

  • Kwon, Beom;Jeon, Donghyun;Kim, Jongyoo;Kim, Junghwan;Kim, Doyoung;Song, Hyewon;Lee, Sanghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1490-1501
    • /
    • 2016
  • In this paper, we propose an image-based indoor localization system using parallel distributed computing. In order to reduce computation time for indoor localization, an scale invariant feature transform (SIFT) algorithm is performed in parallel by using Apache Spark. Toward this goal, we propose a novel image processing interface of Apache Spark. The experimental results show that the speed of the proposed system is about 3.6 times better than that of the conventional system.

Using IoT and Apache Spark Analysis Technique to Monitoring Architecture Model for Fruit Harvest Region (IoT 기반 Apache Spark 분석기법을 이용한 과수 수확 불량 영역 모니터링 아키텍처 모델)

  • Oh, Jung Won;Kim, Hangkon
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.58-64
    • /
    • 2017
  • Modern society is characterized by rapid increase in world population, aging of the rural population, decrease of cultivation area due to industrialization. The food problem is becoming an important issue with the farmers and becomes rural. Recently, the researches about the field of the smart farm are actively carried out to increase the profit of the rural area. The existing smart farm researches mainly monitor the cultivation environment of the crops in the greenhouse, another way like in the case of poor quality t is being studied that the system to control cultivation environmental factors is automatically activated to keep the cultivation environment of crops in optimum conditions. The researches focus on the crops cultivated indoors, and there are not many studies applied to the cultivation environment of crops grown outside. In this paper, we propose a method to improve the harvestability of poor areas by monitoring the areas with bad harvests by using big data analysis, by precisely predicting the harvest timing of fruit trees growing in orchards. Factors besides for harvesting include fruit color information and fruit weight information We suggest that a harvest correlation factor data collected in real time. It is analyzed using the Apache Spark engine. The Apache Spark engine has excellent performance in real-time data analysis as well as high capacity batch data analysis. User device receiving service supports PC user and smartphone users. A sensing data receiving device purpose Arduino, because it requires only simple processing to receive a sensed data and transmit it to the server. It regulates a harvest time of fruit which produces a good quality fruit, it is needful to determine a poor harvest area or concentrate a bad area. In this paper, we also present an architectural model to determine the bad areas of fruit harvest using strong data analysis.

An Abnormal Worker Movement Detection System Based on Data Stream Processing and Hierarchical Clustering

  • Duong, Dat Van Anh;Lan, Doi Thi;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.88-95
    • /
    • 2022
  • Detecting anomalies in human movement is an important task in industrial applications, such as monitoring industrial disasters or accidents and recognizing unauthorized factory intruders. In this paper, we propose an abnormal worker movement detection system based on data stream processing and hierarchical clustering. In the proposed system, Apache Spark is used for streaming the location data of people. A hierarchical clustering-based anomalous trajectory detection algorithm is designed for detecting anomalies in human movement. The algorithm is integrated into Apache Spark for detecting anomalies from location data. Specifically, the location information is streamed to Apache Spark using the message queuing telemetry transport protocol. Then, Apache Spark processes and stores location data in a data frame. When there is a request from a client, the processed data in the data frame is taken and put into the proposed algorithm for detecting anomalies. A real mobility trace of people is used to evaluate the proposed system. The obtained results show that the system has high performance and can be used for a wide range of industrial applications.