
28 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box

International Journal of Contents, Vol.14, No.1, Mar. 2018

Distributed Moving Objects Management System for a Smart Black Box

Hyunbyung Lee

Dept. of Computer Engineering

Korea National University of Transportation, Daehakro 50, Chungju, Chungbuk, Republic of Korea 27469

Seokil Song

Dept. of Computer Engineering

Korea National University of Transportation, Daehakro 50, Chungju, Chungbuk, Republic of Korea 27469

ABSTRACT

In this paper, we design and implement a distributed, moving objects management system for processing locations and sensor data

from smart black boxes. The proposed system is designed and implemented based on Apache Kafka, Apache Spark & Spark

Streaming, Hbase, HDFS. Apache Kafka is used to collect the data from smart black boxes and queries from users. Received location

data from smart black boxes and queries from users becomes input of Apache Spark Streaming. Apache Spark Streaming

preprocesses the input data for indexing. Recent location data and indexes are stored in-memory managed by Apache Spark. Old

data and indexes are flushed into HBase later. We perform experiments to show the throughput of the index manager. Finally, we

describe the implementation detail in Scala function level.

Key words: Moving Objects, Distributed System, Index, Spatio-temporal.

1. INTRODUCTION

The use of GPS enabled mobile devices such as

smartphones, smart black boxes, and tablet PCs have been

prevalent has increased the volumes of spatio-temporal data.

The location and time pair of moving objects is one type of

important spatio-temporal data. Usually, moving objects

periodically send their locations and time to servers. When the

number of moving objects becomes larger and the period

becomes shorter, the overhead of processing the locations of

moving objects becomes a bottleneck.

If an application of moving objects needs the more

accurate positions of moving objects, the transmission period

should be shorter. According to [1], when the number of

moving objects is 6,000,000 and the transmission period is 1

minutes, the server’s workload is 100,000 updates per second.

In that case, a server should process one update every 10

microseconds.

To reduce the bottleneck caused by disk-based data

structures and algorithms several in-memory indexing methods

for moving objects have been proposed [2]-[4]. [2] proposed a

cache-conscious R-tree which optimizes the use of the fast

CPU caches. MOVIES proposed in [3] is based on frequently

building short-lived indexes where the query result staleness is

* Corresponding author, Email: sisong@ut.ac.kr

Manuscript received Mar. 07, 2017; revised May. 23, 2017;

accepted May. 23, 2017

traded for both update and query efficiency. [4] proposed a

main memory index that can exploit the inherent parallelism

available in modern multicore processors. It avoids the

contention between queries and updates that conventional

indexing and locking techniques use in order to maintain a

consistent database state and return correct query results.

On the other hand, in some studies, parallel and distributed

indexing methods to process the location data of moving

objects have been proposed [5]-[9]. MDHbase [5], Hadoop GIS

[6], Spatial Hadoop [7], Parallel Secondo [8], and Tornado [9].

These methods store and query the large amount of location

data based on shared-nothing server cluster. However, still

there are bottlenecks caused by disk accesses.

Recently, the significant drop in main-memory cost has

initiated a wave of main-memory distributed processing

systems. Apache Spark [9] is an open source and general-

purpose engine for large-scale data processing system. It

provides primitives for in-memory cluster computing so as to

avoid the I/O bottleneck occurred when Hadoop MapReduce

repeatedly performs computations for jobs. In order to provide

its performance while retaining the fault-tolerance, locality, and

scalability properties of MapReduce, Apache Spark proposed a

memory abstraction which is called a Resilient Distributed

Dataset (RDD). RDDs only allow coarse-grained updates that

apply the same operation to many data items (such as map,

filter, or join). This approach allows Apache Spark to provide

fault-tolerance through recording lineages, which is the history

of operations used to build a current dataset.

https://doi.org/10.5392/IJoC.2018.14.1.028

 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box 29

International Journal of Contents, Vol.14, No.1, Mar. 2018

Apache Spark Streaming is the extension of Apache Spark

to process stream data. It divides the live data stream into small

batches of sub seconds. The divided small batches are treated

as RDDs, and they are processed by RDD operations. This

approach of Spark Streaming is called as Discretized Stream

(D-Stream). DStream can be recovered by the same recovery

mechanisms of RDDs at a much smaller timescale.

[1] proposed an indexing method for moving objects

based on Spark to manage index and store location data on

distributed in-memory. However, it does not consider the case

that the memory is full of index structures and location data. It

uses grid based indexing techniques. When the memory is full,

index structures and location data is processed according to the

configuration of Spark.

In this paper, we design and implement distributed in-

memory moving objects management system based on Spark. It

consists of data and query collector, index manager and data

manager. Data and query collector which is designed based on

Apache Kafka receives location data and time from vehicles

and queries from users. Index manager creates grid based

spatio-temporal index structures, and it is enhanced version of

[1] which is based on Spark Streaming to consider the case of

the full of main memory. Also, the indexing method of this

paper provides snapshot isolation level of transactional

processing with multi-version concurrency control techniques

based on RDDs of Apache Spark. Data manager is to store old

index structures to HBase and to load index structures. This

paper is an extended version of [13] for implementation detail.

The organization of this paper is as follows. In Section 2,

we describe the existing parallel and distributed moving object

management methods. In Section 3, the proposed moving

object management system is presented in detail, and the

performance evaluation results of the proposed system is given

in Section 4. In Section 5, we describe the implementation

detail and finally, conclude our paper in Section 6.

2. RELATED WORK

Parallel Secondo [8] is a parallel and distributed version of

SECONDO database system based on a cluster of computers. It

integrates Hadoop with Secondo databases and provides almost

all existing Secondo data types and operators. Secondo which

is a base system of Parallel Secondo is a database management

system to support spatial and spatio-temporal data management.

Secondo provides data types and operators to represent and

process the queries of moving objects such as vehicles, animals

and trajectories. Parallel Secondo becomes possible to process

spatio-temporal queries and analysis on the large amount of

moving object data and sets of trajectory data in the cloud.

Hadoop [11] can store large amount of ⟨key, value⟩ pair

data in its HDFS (Hadoop Distributed File System) [11], and

allocate them to the parallel tasks to process, according to the

MapReduce programming model. Like Hadoop GIS [6] which

is Hadoop-based hybrid systems, Parallel Secondo uses HDFS

as the communication way between data and tasks. This kind of

systems cause considerable overhead to migrate and shuffle

data via HDFS since the spatio-temporal data is multi-

dimensional data which is much larger than the traditional data.

Parallel Secondo to reduce the overhead caused by the

communication via HDFS proposes native file system, PSFS

(Parallel Secondo File System). Also, it uses HDFS stores only

a small size of meta data in order to schedule the MapReduce

tasks by Hadoop. Consequently, Parallel Secondo avoids the

useless data migration overhead.

However, since Parallel Secondo store the spatio-temporal

data which is usually much larger than traditional data on hard

disk, it is difficult to process the large amount of location

stream in real time. To our knowledge, Parallel Secondo is

proper for applications to analyze and queries the massive

trajectories in batch mode.

On the other hand, Tornado [9] is a distributed system for

real-time processing of spatio-textual queries over data streams.

Tornado is based on Storm [12] which is a distributed and

fault-tolerant general-purpose stream processing system. [9]

extends Storm with an adaptive indexing layer that improves

the performance of spatio-textual queries.

The main capability of Tornado is semantic search

function that go beyond conventional keyword-based matching.

It identifies and uses concepts over streaming data in an online

fashion in order to determine how semantically related the

identified concepts are to the spatio-textual queries [9]. Even

though Tornado considers spatio-textual quries over massive

data stream, it does not support spatio-temporal queries for

moving objects.

[1] proposes an in-memory distributed indexing method

for moving objects based on Apache Spark. The basic

technique of [1] is simple gird index. [1] adds new

transformation operators and output operators such as bulkLoad,

bulkInsert, splitIndex, search to index and query moving

objects in real-time. The input stream is the location data of

moving objects that are transmitted periodically from vehicles.

Spark Streaming transforms the input stream into D-Streams.

As shown in Fig. 1, the input stream is transformed into

DSt, DSt+1, DSt+2 and DSt+3 continuously by Spark Stream.

It performs bulkLoad and bulkInsert operators on each D-

Stream. bulkLoad builds a gird index GIt with location data in

DSt. [1] uses simple grid techniques to reduce the time for

building and updating an index. The indexing method does not

use lock based concurrency control method. The D-Stream

model of Spark Stream is immutable, so update operations and

search operations are not performed concurrently on an index.

As shown in Fig. 1, the index is updated by bulkLoad and

bulkInsert operators, and multiple versions of the index at time

t, t+1, t+2 an t+3, which can be accessed by users, are on main

memory. Therefore, users can access GIt+2, while GIt+3 is

being built.

Fig. 1. In-memory Grid Index Structure based on Apache Spark

Streaming

30 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box

International Journal of Contents, Vol.14, No.1, Mar. 2018

3. PROPOSED IN-MEMORY DISTRIBUTED MOVING

OBJECTS MANAGEMENT SYSTEM

In this paper, we design and implement distributed in-

memory moving objects management system based on Spark.

The overall architecture of proposed moving object

management system is shown in Fig. 2. As shown in Fig. 2, It

consists of Data and Query Collector, Index Manager, Query

Manager and Data Manager.

Data and Query Collector which is designed based on

Apache Kafka and Spark Streaming receives location data and

time from vehicles and queries from users. Data and Query

Collector is a consumer of Kafka. Kafka is a broker to deliver

location data of vehicles and queries of users to Data and Query

Collector. Data and Query Collector retrieves location data and

queries continuously from Kafka. When location data of

moving objects is received, it partitions DStream of location

data according to their cell ids in a grid.

Index Manager creates a grid based spatio-temporal index

structure, and insert newly received location data into the index

structure. An index structure of the proposed system is divided

into multiple sub index structures according to time interval.

Index Manager monitors the usage of distributed main memory

in real-time and flush some of sub index structures into HBase

according to LRU (Least Recently Used) policy.

Query Manager is to process spatio-temporal queries from

users. It uses sub index structures which is placed on in-

memory and HBase to process the queries. Data Manager is to

store flushed sub index structures and load sub index structures

to in-memory.

Fig. 1. Architecture of the proposed moving object management system

Fig. 3. Index Manager of the proposed distributed in-memory moving object management system

 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box 31

International Journal of Contents, Vol.14, No.1, Mar. 2018

As mentioned earlier, the Index Manager is based on the

distributed grid indexing techniques of [1]. Fig. 3 shows Index

Manager of the proposed moving object management system.

As shown in Fig. 3, Index Manager consists of Global Grid

Index and multiple Sub Grid Indexes. The proposed Index

Manager splits a Grid Index into multiple Sub Grid Index

Structures according to time interval.

Global Index Structure manages multiple Sub Grid

Indexes in order to access a specific Sub Grid Index. For

example, when location data is newly received, Index Manager

needs to access the most recent Sub Grid Index. Also, when a

query is received, Index Manager should access one or more

Sub Grid Indexes according to time predicate of the query.

Each Sub Grid Index manages location data for each cell.

Location data for each cell is managed as a RDD. In Fig. 3,

1_C0_1 is a RDD to store location data for Cell 0 at time

interval t1~t4. When a newly received DStream contains

location data for Cell 0, Index Manager creates a new RDD

1_C0_2 for the new location data. When a new RDD 1_C0_2 is

created, Sub Grid Index at time interval t1-t4, SGI_RDD1_0 is

evolved to SGI_RDD1_1.

Each RDD for a Cell like 1_C0_1 contains RDD name

(RName) of RDD which stores location data. In Fig. 3,

MO_RDD1 and MO_RDD2 store location data of DStream

includes location data between t1 and t2 and location data

between t3 and t4 respectively.

Index Manager processes spatio-temporal queries

concurrently while processing indexing. We guarantee Index

Manager always consistent index data because Spark does not

allow to access RDDs which is being changed. Also, Spark

always recovers a RDD created once with its own fail over

method, so when Index Manager accesses RDDs for index

structure, the RDDs will be never disappeared.

4. PERFORMANCE EVALUATION

In this paper, we perform experiments to show the

scalability of the proposed in-memory distributed moving

object management system. Table 1 shows the parameters used

in our performance evaluation. We construct a cluster

consisting of 4 nodes. The specification of each node is shown

in Table 1. Data set for experiments is generated with

1,000,000 synthetic moving objects. It is assumed that each

moving object transmits its data to the cluster every 1 minute.

We vary the number of nodes from 2 to 4, and the number of

executors from 4 to 40.

Table 1. Parameters of Performance Evaluation

Parameters Specification

Cluster

4 Nnodes

- Node 1 :

Intel(R) Xeon(R) CPU E5506 @ 2.13GHz 16

Cores, 30 Gbyte RAM

- Node 2 :

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 16

Cores, 30 Gbyte RAM

- Node 3 :

Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 4

Cores, 30 Gbyte RAM

- Node 4 :

Intel(R) Xeon(R) CPU E31220 @ 3.10GHz 4

Cores, 30 Gbyte RAM

Data

- Number of moving objects : 1,000,000

- Data transmit cycle of moving objects : 1

minute

Software spark 2.1.0, kafka 0.10.2, hbase 1.3.1

Number of

Nodes
2 ~ 4

Number of

Executors
4 ~ 40

Fig. 4 shows the results of indexing throughput with

varying the number of executors from 4 to 40. We fix the

number of nodes as 4 in this experiment. As shown in this

figure, as the number of executors increases, the indexing

throughput, also, increases from about 60,000/sec to about

120,000/sec. Fig. 5 shows the results of indexing throughput

with varying the number of nodes from 2 to 4. In this

experiment, the number of executors is fixed as 4. As the

number of nodes increases, the indexing throughput increases

from about 52,000 to about 58,000.

Through these experiments, we can show the scalability of

our Index Manager. It is rather difficult to confirm the

scalability since the number of nodes used in our experiments

is not sufficient. In our future work, we will perform

experiments with more nodes.

Fig. 4. Indexing throughput with varying the number of

executors (the number of nodes is 4)

Fig. 5. Indexing throughput with varying the number of nodes

(the number of executors is 4)

32 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box

International Journal of Contents, Vol.14, No.1, Mar. 2018

5. IMPLEMENTATION

Fig. 6. Lineage of transformations for the implemented moving

object management system

Fig. 6 shows the Apache Spark transformation lineage of

the implemented smart black box data processing and analyzer.

Input stream data via Apache Kafka or Raw Socket is

transformed into the required data type via the function dParse.

At this time, the input stream becomes Dstream [UserData]

through Transformation. The function dParse used in this step

processes the input data (string), assigns CellID, and

decomposes and reads the date in year, month, day, hour,

minute and second.

After converting the data type to Dstream [UserData]

through dParse, map and reduceByKey operations are

performed on the data. map operation to convert Dstream data

into key-value data and then group the data with the same key

(CellID) through reduceByKey operation.

The foreachRDD function is used for grouped data. If the

Dstream is a set of consecutive RDDs, the foreachRDD

function can perform the desired operation by accessing each

RDD. foreachRDD first performs a collection operation on the

key data. collection is a function that collects data processed by

each of the exciters in the spark, and performs a filter function

for each key in the RDD with the gathered key. filter extracts

only the data satisfying the condition in RDD, and the filtered

RDD is input through putRecord function of GlobalIndex.

Fig. 7 shows the function call diagram of the implemented

moving object management system. Also, Table 2 shows the

function list and input/output and function of each functions.

Fig. 7. Block diagram of the implemented moving object

management system

Table 2. Function list for the implemented moving object

management system

Functions Descriptions

fileWrite

input - (bytes:Array[Byte], fName:String,

ftype:String)

receive image, file name from black box and store

SaveImages

input- (bParam:Array[Byte], Loop:Int,
ImageStartLoc:Int)

output – returnVal

receive images and store them

parse

input - (bHeader: Array[Byte], bParam : Array[Byte])

output – ReturnClass

decoding received data

getHeader

input - (bHeader: Array[Byte], FuncName:String,

ErrCode:Int)

output – ReturnClass

create header

getPktName

input - (Bytes:Array[Byte])

output – String

return received packet header name

MainParser

input - (Bytes:Array[Byte])

output – ReturnClass

decoding input byte stream

gpsDataParse
input – (buffer:Array[Byte], len:Int,

gpsBuffer:ArrayBuffer[GpsDataView])

decoding location data

chBodyLengh
input - (bytes:Array[Byte], length:Int)
resize the size of decoded packet

kSend
input - (data:RowData, topic:String)

send input data to Kafka

 Seokil Song : Distributed Moving Objects Management System for a Smart Black Box 33

International Journal of Contents, Vol.14, No.1, Mar. 2018

6. CONCLUSION

In this paper, we designed and implemented a distributed

in-memory moving object management system to process the

large amount of location stream from moving objects. The

proposed system consists of Data and Query Collector, Index

Manager, Query Manager and Data Manager. We performed

experiments to show the scalability of indexing throughput of

our proposed system. From the experimental results, we could

know the proposed system is scalable to the number of nodes

and executors of Spark. Finally, we describe the

implementation detail.

In our future work, we will perform experiments with

more nodes, and also, compare with existing moving object

management systems.

REFERENCES

[1] H. Li, Y. Lee, and S. Song, “Grid based Distributed In-

memory Indexing for Moving Objects,” Proceedings of

International Symposium on Information Technology

Convergence, Jeonju, Republic of Korea, Oct. 30-31 2014.

[2] K. Kim, S. K. Cha, and K. Kwon, “Optimizing

Multidimensional Index Trees for Main Memory Access,”

SIGMOD Record, vol. 30, no. 2, 2001, pp.139-150.

[3] L. Biveinis, S. Saltenis, and C. S. Jensen, “Main-memory

Operation Buffering for Efficient R-tree Update,”

Proceedings of the 33rd 41st International Conference on

Very Large Data Bases, Vienna, Austria, Sep. 23-28 2007,

pp. 591-602.

[4] D. Šidlauskas, S. Šaltenis, and C. S. Jensen, “Parallel

Mainmemory Indexing for Moving-object Query and

Update Workloads,” Proceedings of the 2012 ACM

SIGMOD International Conference on Management of

Data, Arizona, USA, May. 20-24 2012, pp. 37-48.

[5] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi,

“MD-HBase: A Scalable Multi-dimensional Data

Infrastructure for Location Aware Services,” Proceedings

of the 2011 12th IEEE International Conference on

Mobile Data Management, Lulea, Sweden, Jun. 6-9 2011,

pp.7-16.

[6] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H.

Saltz, “Hadoop-GIS: A High Performance Spatial Data

Warehousing System over Mapreduce,” Proceedings of the

39rd 41st International Conference on Very Large Data

Bases, Trento, Italy, Aug. 26-30 2013, pp. 1009-1020.

[7] A. Eldawyand and M. F. Mokbel, “Spatial Hadoop: A

Mapreduce Framework for Spatial Data,” Proceedings of

the 2015 IEEE 31st International Conference on Data

Engineering, Seoul, Republic of Korea, Apr. 3-17 2015,

pp. 1352-1363.

[8] J. Lu and R. H. Guting, “Parallel Secondo: A Practical

System for Largescale Processing of Moving Objects,”

Proceedings of the 2014 IEEE 30st International

Conference on Data Engineering, Chicago, USA, Mar. 31-

Apr. 4 2014, pp. 1190-1193.

[9] A. R. Mahmood, A. M. Aly, T. Qadah, E. K. Rezig, A.

Daghistani, A. Madkour, A. S. Abdelhamid, M. S. Hassan,

S. B. Walid, and G. Aref, “Tornado: A Distributed Spatio-

textual Stream Processing System,” Proceedings of the

41st International Conference on Very Large Data Bases,

Hawaii, USA, Aug. 31- Sep. 4 2015, pp. 2020-2023.

[10] Apache Spark, http://spark.apache.org/

[11] Apache Hadoop, http://hadoop.apache.org/

[12] Apache Storm, http://storm.apache.org/

[13] H. Lee, Y. Kwak, and S. Song, “Implementation of

Distributed In-Memory Moving Objects Management

System,” Advanced Science Letters, vol. 23, no.10, 2017,

pp. 10361-10365.

Hyeonbyeong Lee

He received the BS degree in Computer

Engineering Department from Korea

National University of Transportation,

Republic of Korea in 2014. He is an

graduate student of Korea National

University of Transportation, Republic of

Korea. His research interests are

bioinformatics, moving object databases and so on.

Seokil Song

He received the BS, MS and PhD degrees

in Computer and Communication

Department from Chungbuk National

University of South Korea in 1998, 2000

and 2003, respectively. He is an

Associate Professor of the Computer

Engineering Department, Korea National

University of Transportation, Republic of Korea. His research

interests are database systems, index structures, concurrency

control, storage systems, sensor network and XML database.

http://storm.apache.org/

