In this paper, we design and implement a distributed, moving objects management system for processing locations and sensor data from smart black boxes. The proposed system is designed and implemented based on Apache Kafka, Apache Spark & Spark Streaming, Hbase, HDFS. Apache Kafka is used to collect the data from smart black boxes and queries from users. Received location data from smart black boxes and queries from users becomes input of Apache Spark Streaming. Apache Spark Streaming preprocesses the input data for indexing. Recent location data and indexes are stored in-memory managed by Apache Spark. Old data and indexes are flushed into HBase later. We perform experiments to show the throughput of the index manager. Finally, we describe the implementation detail in Scala function level.
Seo, Ji-Hye;Park, Mi-Rim;Yang, Hye-Kyung;Yong, Hwan-Seung
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1265-1267
/
2015
최근 IoT 기술의 등장으로 저전력 소형 컴퓨터인 라즈베리파이 클러스터가 IoT 데이터 처리를 위해 사용되고 있다. IoT 기술이 발전하면서 다양한 데이터가 생성되고 있으며 IoT 환경에서도 빅데이터 처리가 요구되고 있다. 빅데이터 처리 프레임워크에는 일반적으로 하둡이 사용되고 있으며 이를 대체하는 솔루션으로 Apache Spark가 등장했다. 본 논문에서는 PC와 라즈베리파이 클러스터에서의 성능을 Apache Spark를 통해 비교하였다. 본 실험을 위해 Yelp 데이터를 사용하며 데이터 로드 시간과 Spark SQL을 이용한 데이터 처리 시간을 통해 성능을 비교하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.543-544
/
2020
최근 급증하는 클라우드 도입 정책에 비해 클라우드 취약점 진단 및 관리 기술은 상대적으로 미비하여 오픈소스로 사용되고 있는 클라우드 기술의 신규 취약점이 발생하고 있다. 본 논문에서는 Apache Spark를 활용한 쿠버네티스 클라우드 취악점 진단 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 활용하여 쿠버네티스 클라우드를 구성할 때 작성되는 Object Spec의 데이터 중 취약점을 유발하는 값을 진단 및 분석, 대응이 가능하도록 설계하였다.
Hayoon Kim;Wonjib Kim;Hyeopgeon Lee;Young Woon Kim
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.33-34
/
2023
성장하는 빅 데이터 시장과 빅 데이터 수의 기하급수적인 증가는 기존 컴퓨팅 환경에서 데이터 처리의 어려움을 야기한다. 특히 이미지 데이터 처리 속도는 데이터양이 많을수록 현저하게 느려진다. 이에 본 논문에서는 Apache Spark와 OpenCV를 활용한 분산 클러스터 컴퓨팅 환경의 대용량 이미지 머신러닝 시스템을 제안한다. 제안하는 시스템은 Apache Spark를 통해 분산 클러스터를 구성하며, OpenCV의 이미지 처리 알고리즘과 Spark MLlib의 머신러닝 알고리즘을 활용하여 작업을 수행한다. 제안하는 시스템을 통해 본 논문은 대용량 이미지 데이터 처리 및 머신러닝 작업 속도 향상 방법을 제시한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.4
/
pp.79-84
/
2023
Apache Spark, which provides the fastest processing speed among recent distributed and parallel processing technologies, provides real-time functions and machine learning functions. Although official documentation guides for these functions are provided, a method for fusion of functions to predict a specific value in real time is not provided. Therefore, in this paper, we conducted a study to predict the value of data in real time by fusion of these functions. The overall configuration is collected by downloading stock price data provided by the Python programming language. And it creates a model of regression analysis through the machine learning function, and predicts the adjusted closing price among the stock price data in real time by fusing the real-time streaming function with the machine learning function.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.2
/
pp.270-276
/
2018
Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.
The modern large-scale surveys and state-of-the-art cosmological simulations produce various kinds of big data composed of millions and billions of galaxies. Inevitably, we need to adopt modern Big Data platforms to properly handle such large-scale data sets. In my talk, I will briefly introduce the de facto standard of modern Big Data platform, Apache Spark, and present some examples to demonstrate how Apache Spark can be utilized for solving data-driven astronomical problems.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.11
/
pp.1490-1501
/
2016
In this paper, we propose an image-based indoor localization system using parallel distributed computing. In order to reduce computation time for indoor localization, an scale invariant feature transform (SIFT) algorithm is performed in parallel by using Apache Spark. Toward this goal, we propose a novel image processing interface of Apache Spark. The experimental results show that the speed of the proposed system is about 3.6 times better than that of the conventional system.
Modern society is characterized by rapid increase in world population, aging of the rural population, decrease of cultivation area due to industrialization. The food problem is becoming an important issue with the farmers and becomes rural. Recently, the researches about the field of the smart farm are actively carried out to increase the profit of the rural area. The existing smart farm researches mainly monitor the cultivation environment of the crops in the greenhouse, another way like in the case of poor quality t is being studied that the system to control cultivation environmental factors is automatically activated to keep the cultivation environment of crops in optimum conditions. The researches focus on the crops cultivated indoors, and there are not many studies applied to the cultivation environment of crops grown outside. In this paper, we propose a method to improve the harvestability of poor areas by monitoring the areas with bad harvests by using big data analysis, by precisely predicting the harvest timing of fruit trees growing in orchards. Factors besides for harvesting include fruit color information and fruit weight information We suggest that a harvest correlation factor data collected in real time. It is analyzed using the Apache Spark engine. The Apache Spark engine has excellent performance in real-time data analysis as well as high capacity batch data analysis. User device receiving service supports PC user and smartphone users. A sensing data receiving device purpose Arduino, because it requires only simple processing to receive a sensed data and transmit it to the server. It regulates a harvest time of fruit which produces a good quality fruit, it is needful to determine a poor harvest area or concentrate a bad area. In this paper, we also present an architectural model to determine the bad areas of fruit harvest using strong data analysis.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.88-95
/
2022
Detecting anomalies in human movement is an important task in industrial applications, such as monitoring industrial disasters or accidents and recognizing unauthorized factory intruders. In this paper, we propose an abnormal worker movement detection system based on data stream processing and hierarchical clustering. In the proposed system, Apache Spark is used for streaming the location data of people. A hierarchical clustering-based anomalous trajectory detection algorithm is designed for detecting anomalies in human movement. The algorithm is integrated into Apache Spark for detecting anomalies from location data. Specifically, the location information is streamed to Apache Spark using the message queuing telemetry transport protocol. Then, Apache Spark processes and stores location data in a data frame. When there is a request from a client, the processed data in the data frame is taken and put into the proposed algorithm for detecting anomalies. A real mobility trace of people is used to evaluate the proposed system. The obtained results show that the system has high performance and can be used for a wide range of industrial applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.