• Title/Summary/Keyword: antiviral effect

Search Result 210, Processing Time 0.022 seconds

Analgesic, Anti-inflammatory and Antiviral Effects of Melandrin Derivatives (Melandrin유도체의 진통 소염 및 항바이러스 효과)

  • Lim, Jung-Ki;Lee, Eun-Bang;Woo, Won-Sik;Lee, Kang-Ro;Lee, Yeong-Sun;Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.345-350
    • /
    • 1994
  • Fourteen melandrin derivatives(I-XIV) were investigated on analgesic, anti-inflammatory and antiviral activities . Compound I [N-(p-hydroxybenzoyl)-5-hydroxyanthranilic acid methvl ester], Xll [N-(2-phenoxypropionyl)-5-hydroxy anthranilic acid propyl ester and XIV [N-(2-phenoxypropionyl)-5-hydroxyanthranilic acid exhibited analgesic activity in tail pressure and Randall-Selitto method. But no anti-inflammatory activity was shown. Compound I exhibited weak antiviral activity on Herpes simplex virus type I F strain by virus-induced cytopathic effect(CPE) assay and it's selectivity index(Sl) was 8.17.

  • PDF

The Therapeutic Effect of Oldenlandiae Herba and Houttuynia Cordata on Calf Diarrhea (송아지 설사증에 대한 백화사설초와 어성초의 치료 효과)

  • Seul, Ki-Yang;Yun, Young-Min;Kim, Byung-Sun;Choi, Gui-Cheol;Lee, Kyoung-Kap
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.529-536
    • /
    • 2007
  • The purpose of this study was to elucidate the effect of Oldenlandiae herba and Houttuyniae cordata on calf diarrhea in farms. We examined the antibacterial and antiviral effect of Oldenlandiae herba and Houttuyniae cordata extracts in vitro. And we divided diarrheal calves into three roups in farm; Oldenlandiae herba administration group(10 calves), Oldenlandiae herba and Houttuyniae cordata administration group(10 calves) and control group(7 calves). We estimated the therapeutic effect of the calf diarrhea by using clinical signs, CBC, AST, BUN, creatinine, and measurement of lymphocyte distribution in whole blood. Oldenlandiae herba and Houttuyniae cordata extracts by ethanol(98%) had antibacterial and antiviral effect. In the condition of diarrhea, the fecal condition of Oldenlandiae herba and Houttuyniae cordata group was relieved more than that of others group during experimental period. PCV and fibrinogen concentrations were high in control group. AST and BUN were within normal range in all groups. Administration of Oldenlandiae herba and Houttuyniae cordata was not toxic to the liver and kidney. And Oldenlandiae herba and Houttuyniae cordata extracts also affected the lymphocytes distribution in blood. From these results, we suggested that administration of Oldenlandiae herba and Houttuyniae cordata should be effective on the dairy calf diarrhea in farms.

Possible Mechanism Underlying the Antiherpetic Activity of a Proteoglycan Isolated from the Mycelia of Ganoderma lucidum in Vitro

  • Li, Zubing;Liu, Jing;Zhao, Yifang
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • GLPG (Ganoderma lucidum proteoglycan) was a bioactive fraction obtained by the liquid fermentation of the mycelia of Ganoderma lucidum, EtOH precipitation, and DEAE-cellulose column chromatography. GLPG was a proteoglycan with a carbohydrate: protein ratio of 10.4: 1. Its antiviral activities against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were investigated using a cytopathic inhibition assay. GLPG inhibited cell death in a dose-dependent manner in HSV-infected cells. In addition, it had no cytotoxic effect even at 2 mg/ml. In order to study the mode of action of the antiviral activity of GLPG, cells were treated with GLPG before, during, and after infection, and viral titer in the supernatant of cell culture 48 h post-infection was determined using a $TCID_{50}$ assay. The antiviral effects of GLPG were more remarkable before viral treatment than after treatment. Although the precise mechanism has yet to be defined, our work suggests that GLPG inhibits viral replication by interfering with the early events of viral adsorption and entry into target cells. Thus, this proteoglycan appears to be a candidate anti-HSV agent.

Antiviral Activity of Plant-derived Natural Products against Influenza Viruses (식물 유래 천연물의 인플루엔자에 대한 항바이러스 활성)

  • Kim, Seonjeong;Kim, Yewon;Kim, Ju Won;Hwang, Yu-bin;Kim, Seong Hyeon;Jang, Yo Han
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.375-390
    • /
    • 2022
  • Influenza viruses are zoonotic respiratory pathogens, and influenza infections have caused a substantial burden on public health systems and the livestock industry. Although currently approved seasonal influenza vaccines have shown potent protection efficacy against antigenically well-matched strains, there are considerable unmet needs for the efficient control of viral infections. Enormous efforts have been made to develop broadly protective universal influenza vaccines to tackle the huge levels of genetic diversity and variability of influenza viruses. In addition, antiviral drugs have been considered important interventions for the treatment of viral infections. The viral neuraminidase inhibitor oseltamivir is the most widely used antiviral medication to treat influenza A and influenza B viruses. However, unsatisfactory clinical outcomes resulting from side effects and the emergence of resistant variants have led to greater attention being paid to plants as a natural resource for anti-influenza drugs. In particular, the recent COVID-19 pandemic has underpinned the need for safe and effective antiviral drugs with a broad spectrum of antiviral activity to prevent the rapid spread of viruses among humans. This review outlines the results of the antiviral activities of various natural products isolated from plants against influenza viruses. Special focus is paid to the virucidal effects and the immune-enhancing effects of antiviral natural products, since the products have broad applications as inactivating agents for the preparation of inactivated vaccines and vaccine adjuvants.

In Vitro and In Vivo Anti-Tobacco Mosaic Virus Activities of Essential Oils and Individual Compounds

  • Lu, Min;Han, Zhiqiang;Xu, Yun;Yao, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Essential oils are increasingly of interest for use as novel drugs acting as antimicrobial and antiviral agents. In the present study, we report the in vitro antiviral activities of 29 essential oils, extracted from Chinese indigenous aromatic plants, against the tobacco mosaic virus (TMV). Of these essential oils, those oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass effected a more than 50% inhibition of TMV at 100 ${\mu}g/ml$. In addition, the mode of antiviral action of the active essential oils was also determined. Essential oils isolated from artemisia and lemongrass possessed potent inactivation and curative effects in vivo and had a directly passivating effect on TMV infection in a dose-dependent manner. However, all other active essential oils exhibited a moderate protective effect in vivo. The chemical constitutions of the essential oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass were identified by gas chromatography and gas chromatography-mass spectrometry. The major components of these essential oils were ${\alpha}$-zingiberene (35.21%), limonene (76.25%), terpinen-4-ol (41.20%), limonene (80.95%), 1,8-cineole (27.45%), and terpinolene (10.67%). The curative effects of 10 individual compounds from the active essential oils on TMV infection were also examined in vivo. The compounds from citronellal, limonene, 1,8-cineole, and ${\alpha}$-zingiberene effected a more than 40% inhibition rate for TMV infection, and the other compounds demonstrated moderate activities at 320 ${\mu}g/ml$ in vivo. There results indicate that the essential oils isolated from artemisia and lemongrass, and the individual compound citronellal, have the potential to be used as an effective alternative for the treatment of tobacco plants infected with TMV under greenhouse conditions.

Fructus Amomi Cardamomi Extract Inhibits Coxsackievirus-B3 Induced Myocarditis in a Murine Myocarditis Model

  • Lee, Yun-Gyeong;Park, Jung-Ho;Jeon, Eun-Seok;Kim, Jin-Hee;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.2012-2018
    • /
    • 2016
  • Coxsackievirus B3 (CVB3) is the main cause of acute myocarditis and dilated cardiomyopathy. Plant extracts are considered as useful materials to develop new antiviral drugs. We had previously selected candidate plant extracts, which showed anti-inflammatory effects. We examined the antiviral effects by using a HeLa cell survival assay. Among these extracts, we chose the Amomi Cardamomi (Amomi) extract, which showed strong antiviral effect and preserved cell survival in CVB3 infection. We investigated the mechanisms underlying the ability of Amomi extract to inhibit CVB3 infection and replication. HeLa cells were infected by CVB3 with or without Amomi extract. Erk and Akt activities, and their correlation with virus replication were observed. Live virus titers in cell supernatants and viral positive- and negative-strand RNA amplification were measured. Amomi extract significantly increased HeLa cell survival in different concentrations ($100-10{\mu}g/ml$). CVB3 capsid protein VP1 expression (76%) and viral protease 2A-induced eIF4G1 cleavage (70%) were significantly decreased in Amomi extract ($100{\mu}g/ml$) treated cells. The levels of positive- (20%) and negative-strand (80%) RNA were dramatically decreased compared with the control, as revealed by reverse transcription-PCR. In addition, Amomi extract improved mice survival (51% vs 26%) and dramatically reduced heart inflammation in a CVB3-induced myocarditis mouse model. These results suggested that Amomi extract significantly inhibited Enterovirus replication and myocarditis damage. Amomi may be developed as a therapeutic drug for Enterovirus.

The Potential Anti-HBV Effect of Amantadine in Combination with Ursodeoxycholic Acid and Biphenyl Dimethyl Dicarboxylate in HepG2 2.2.15 Cells

  • Joo Seong Soo;Lee Do Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 2005
  • Experimental studies have demonstrated that the triple combination of amantadine (A)/ ursodeoxycholic acid (UDCA, U)/ biphenyl dimethyl dicarboxylate (DDB, D) might have a preferential antiviral effect compared with that observed in interferon-induced antiviral signal pathways, such as those of $STAT1\alpha$ and the 6-16 genes. To confirm the results, this study examined whether th signal transduction for the antiviral activity in HepG2 2.2.15 was induced dependently or independently of interferon. To accomplish this, the correlation between the $STAT1\alpha$ and 6-16 genes, and nitric oxide, for the mediation of the antiviral activity was assessed. The increase in nitric oxide in the UDCA groups suggests that the inhibition of viral gene replication was enhanced by the amantadine combinations (AU and AUD), and might be more effective if incubated for longer periods. It was found that $STAT1\alpha$ was activated by the amantadine combination, although to a lesser extent than that of $interferon-\alpha$, and the primary endpoints examined for the inhibition of gene expression (HBsAg and HBcAg) were remarkably well regulated. This suggests that the amantadine triple, or at least the double, combination had better clinical benefits than those of $IFN-\alpha$ and the nucleoside analogue single treatment. This demonstrates that the amantadine combination might be a substitute for the existing HBV therapy if the results of in vivo and in vitro studies concur.

Antiviral Effect of Probiotics against Respiratory Tract Infections: A Review (프로바이오틱스의 호흡기감염에 대한 항바이러스 효과: 총설)

  • Jung-Whan Chon;Kun-Ho Seo;Young-Seon Kim;Hye-Young Youn;Hyeon-Jin Kim;Hyungsuk Oh;Won-Uk Hwang;Seok-Hyeong Kang;Hajeong Jeong;Hyun-Ju Kim;Dongkwan Jeong;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.57-66
    • /
    • 2023
  • Majority of the respiratory infectious diseases that are generally prevalent in Korea from autumn to winter are caused by viruses such as respiratory syncytial virus and influenza A virus. Therefore, there is rapidly rising interest in determining the antiviral effects of probiotics against respiratory viruses and elucidating the probable mechanism behind it. Various human clinical trials as well as animal experiments have shown that some probiotics potentially have antiviral activity based on their immunomodulatory effect. Hence, this review describes in detail the various possibilities of using probiotics as antiviral agents against respiratory viruses and their potential effects. Also, it provides basic data regarding the availability of different probiotics relevant for their production by dairy and food industries.

Antiviral effect of 18-mer-peptide (1b-4/21-C12) on Japanese encephalitis virus and Akabane virus

  • Yang, Dong-Kun;Park, Yu-Ri;Kwon, Young Do;Kim, Ha-Hyun;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.3
    • /
    • pp.19.1-19.6
    • /
    • 2022
  • Japanese encephalitis virus (JEV) and Akabane virus (AKAV) are mosquito-borne viruses that cause encephalitis and reproductive disorders in horses and cattle, respectively. There is no treatment for JEV or AKAV infections in animals. Therefore, we evaluated the antiviral activity of 18-mer amphipathic peptides in the 1b-4/21-C series on JEV and AKAV using Vero cells in vitro and evaluated their effects on JEV in mice. Of 6 peptides, 1b-4/21-C12 had the lowest IC50 of 0.313 against JEV and its use as an antiviral against JEV and AKAV was examined. The IC50 of 1b-4/21-C12 against JEV and AKAV was 0.78 and 1.14 µM, respectively. Mice treated with 5 or 2 mg/kg of 1b-4/21-C12 had 32% and 16% survival rates, respectively, and the surviving mice treated with 1b-4/21-C12 began to gain weight beginning 8 days post challenge with the virulent Nakayama strain. Moreover, 20 µM 1b-4/21-C peptide had no cytotoxic effects on Vero cells. Our in vitro and in vivo results indicate that 1b-4/21-C12 has antiviral activity against enveloped JEV and AKAV and might be useful as a therapeutic substance.

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles (다중 코팅 폴리에스터 섬유 여재의 항균 및 항바이러스 특성)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.444-450
    • /
    • 2022
  • The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.