Browse > Article
http://dx.doi.org/10.14478/ace.2022.1083

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles  

Ko, Sangwon (Transportation Environmental Research Department, Korea Railroad Research Institute)
Lee, Jae-Young (Transportation Environmental Research Department, Korea Railroad Research Institute)
Park, Duckshin (Transportation Environmental Research Department, Korea Railroad Research Institute)
Publication Information
Applied Chemistry for Engineering / v.33, no.4, 2022 , pp. 444-450 More about this Journal
Abstract
The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.
Keywords
Antibacterial coating; Antiviral coating; Influenza A; SARS-CoV-2; Multi-coating;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Ko, J.-Y. Lee, and D. Park, Recent progress of antibacterial coatings on solid substrates through antifouling polymers, Appl. Chem. Eng., 32, 371-378 (2021).   DOI
2 R. Hirose, H. Ikegaya, Y. Naito, N. Watanabe, T. Yoshida, R. Bandou, T. Daidoji, Y. Itoh, and T. Nakaya, Survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus on human skin: importance of hand hygiene in coronavirus disease 2019 (COVID-19), Clin. Infect. Dis., 73, e4329-e4335 (2021).   DOI
3 I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, and T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 350, 1731-1739 (2004).   DOI
4 R. Pemmada, X. Zhu, M. Dash, Y. Zhou, S. Ramakrishna, X. Peng, V. Thomas, S. Jain, and H. S. Nanda, Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics, Materials, 13, 4041 (2020).   DOI
5 K. Imai, H. Ogawa, V. N. Bui, H. Inoue, J. Fukuda, M. Ohba, Y. Yamamoto, and K. Nakamura, Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials, Antivir. Res., 93, 225-233 (2012).   DOI
6 R. Davis, S. Zivanovic, D. H. D'Souza, and P. M. Davidson, Effectiveness of chitosan on the inactivation of enteric viral surrogates, Food Microbiol., 32, 57-62 (2012).   DOI
7 Y. Xue, X. Gu, S. Lu, Z. Miao, M. L. Brusseau, M. Xu, X. Fu, X. Zhang, Z. Qiu, and Q. Sui, The destruction of benzene by calcium peroxide activated with Fe(II) in water, Chem. Eng. J., 302, 187-193 (2016).   DOI
8 G. Borkow, R. W. Sidwell, D. F. Smee, D. L. Barnard, J. D. Morrey, H. H. Lara-Villegas, Y. Shemer-Avni, and J. Gabbay, Neutralizing viruses in suspensions by copper oxide-based filters, Antimicrob. Agents Chemother., 51, 2605-2607 (2007).   DOI
9 G. Borkow, S. S. Zhou, T. Page, and J. Gabbay, A novel anti-influenza copper oxide containing respiratory face mask, PLoS ONE, 5, e11295 (2010).   DOI
10 X. Zhang, X. Gu, S. Lu, M. L. Brusseau, M. Xu, X. Fu, Z. Qiu, and Q. Sui, Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide, Chem. Eng. J., 325, 188-198 (2017).   DOI
11 S. Jung, J.-Y. Yang, E.-Y. Byeon, D.-G. Kim, D.-G. Lee, S. Ryoo, S. Lee, C.-W. Shin, H. W. Jang, H. J. Kim, and S. Lee, Copper-coated polypropylene filter face mask with SARS-CoV-2 antiviral ability, Polymers, 13, 1367 (2021).   DOI
12 Y.-J. Chang, Y.-T. Chang, and C.-H. Hung, The use of magnesium peroxide for the inhibition of sulfate-reducing bacteria under anoxic conditions, J. Ind. Microbiol. Biotechnol., 35, 1481-1491 (2008).   DOI
13 H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics, Int. J. Mol. Sic., 14, 1854-1869 (2013).   DOI
14 G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541-1547 (2011).   DOI
15 J. Yang, Z. Ao, H. Wu, and S. Zhang, Immobilization of chitosan-templated MnO2 nanoparticles onto filter paper by redox method as a retrievable Fenton-like dip catalyst, Chemosphere, 268, 128835 (2021).   DOI
16 K. Hwang, Antiviral activity of chitosan, chitin and polysaccharides derived from seaweed, J. Chitin Chitosan, 25, 93-104 (2020).   DOI
17 S. Ko, Multifunctional surface coating using chitosan and its chemical functionalization, Bull. Korean Chem. Soc., 43, DOI: 10.1002/bkcs.12600 (2022).   DOI
18 J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015).   DOI
19 K. Yu, J. Ho, E. McCandlish, B. Buckley, R. Patel, Z. Li, and N. C. Shapley, Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications, Colloids Surf. A Physicochem. Eng. Asp., 425, 31-41 (2013).   DOI
20 T. Flerlage, D. F. Boyd, V. Meliopoulos, P. G. Thomas, and S. Schultz-Cherry, Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract, Nat. Rev. Microbiol., 19, 425-441 (2021).   DOI
21 K. Choi, T. Kim, S. Yun, J. Yoon, and J.-C. Lee, Development of antimicrobial N-halamine containing alkyl chain for paint, Appl. Chem. Eng., 22, 45-47 (2011).
22 S. Ko, W. Jeong, D. Park, and S.-B. Kwon, Numerical analysis of droplets exhaled by train cabin passengers, J. Odor Indoor Environ., 18, 131-139 (2019).   DOI
23 N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, N. Engl. J. Med., 382, 1564-1567 (2020).   DOI
24 A. J. Prussin, II, A. Vikram, K. J. Bibby, and L. C. Marr, Seasonal dynamics of the airborne bacterial community and selected viruses in a children's daycare center, PLoS ONE, 11, e0151004 (2016).   DOI
25 M. Versoza, J. Heo, S. Ko, M. Kim, and D. Park, Solid oxygen-purifying (SOP) filters: A self-disinfecting fitlers to inactive aerosolized viruses, Int. J. Environ. Res. Public Health, 17, 7858 (2020).   DOI
26 S.-B. Kwon, J. Park, J. Jang, Y. Cho, D.-S. Park, C. Kim, G.-N. Bae, and A. Jang, Study on the initial velocity distribution of exhaled air from coughing and speaking, Chemosphere, 87, 1260-1264 (2012).   DOI
27 M. Cloutier, D. Mantovani, and F. Rosei, Antibacterial coatings: Challenges, Perspectives, and Opportunities, Trends Biotechnol., 33, 637-652 (2015).   DOI
28 J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010).
29 C. Cermelli, A. Cuoghi, M. Scuri, C. Bettua, R. Neglia, A, Ardizzoni, E. Blasi, T. Iannitti, and B. Palmieri, In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid, Virol. J., 8, 141 (2011).   DOI