Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10078

In Vitro and In Vivo Anti-Tobacco Mosaic Virus Activities of Essential Oils and Individual Compounds  

Lu, Min (Aromatic Plant R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University)
Han, Zhiqiang (Flavor & Fragrance Research Center, Yunnan Academy of Tobacco Science)
Xu, Yun (Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences)
Yao, Lei (Aromatic Plant R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 771-778 More about this Journal
Abstract
Essential oils are increasingly of interest for use as novel drugs acting as antimicrobial and antiviral agents. In the present study, we report the in vitro antiviral activities of 29 essential oils, extracted from Chinese indigenous aromatic plants, against the tobacco mosaic virus (TMV). Of these essential oils, those oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass effected a more than 50% inhibition of TMV at 100 ${\mu}g/ml$. In addition, the mode of antiviral action of the active essential oils was also determined. Essential oils isolated from artemisia and lemongrass possessed potent inactivation and curative effects in vivo and had a directly passivating effect on TMV infection in a dose-dependent manner. However, all other active essential oils exhibited a moderate protective effect in vivo. The chemical constitutions of the essential oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass were identified by gas chromatography and gas chromatography-mass spectrometry. The major components of these essential oils were ${\alpha}$-zingiberene (35.21%), limonene (76.25%), terpinen-4-ol (41.20%), limonene (80.95%), 1,8-cineole (27.45%), and terpinolene (10.67%). The curative effects of 10 individual compounds from the active essential oils on TMV infection were also examined in vivo. The compounds from citronellal, limonene, 1,8-cineole, and ${\alpha}$-zingiberene effected a more than 40% inhibition rate for TMV infection, and the other compounds demonstrated moderate activities at 320 ${\mu}g/ml$ in vivo. There results indicate that the essential oils isolated from artemisia and lemongrass, and the individual compound citronellal, have the potential to be used as an effective alternative for the treatment of tobacco plants infected with TMV under greenhouse conditions.
Keywords
Antiviral activity; tobacco mosaic virus; essential oil; individual compound; chemical composition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, R. P. 2001. Identificantion of Essential Oil Components by Gas Chromatography/Quadruple Mass Spectroscopy, pp. 9-51. 3th Ed. Allured Publishing Co., Illinois.
2 Aleksandra, P., S. R. Marina, B. Tijana, and A. Marko. 2009. Antimutagenic effect of sage tea in the wing spot test of Drosophila melanogaster. Food Chem. Toxicol. 47: 180-183.   DOI   ScienceOn
3 Armaka, M., E. Papanikolaou, A. Sivropoulou, and M. Arsenakis. 1999. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res. 43: 79-92.   DOI   ScienceOn
4 Astani, A., J. Reichling, and P. Schnitzler. 2009. Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement. Alternat. Med. 187: 1-8.
5 Chen, J., X. H. Yan, J. H. Dong, P. Sang, X. Fang, Y. T. Di, et al. 2009. Tobacco mosaic virus (TMV) inhibitors from Picrasma quassioides Benn. J. Agric. Food Chem. 57: 6590-6595.   DOI   ScienceOn
6 Benner, J. P. 1993. Pesticidal compounds from higher plants. Pestic. Sci. 39: 95-102.   DOI   ScienceOn
7 Bishop, C. D. 1995. Antiviral activity of the essential oil of Melaluca alternifolia (Maiden & Betche) cheel (tea tree) against tobacco mosaic virus. J. Essent. Oil Res. 7: 641-644.   DOI
8 Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods - a review. Int. J. Food Microbiol. 94: 223-253.   DOI   ScienceOn
9 Chen, M. H., Z. Chen, B. A. Song, P. S. Bhadury, S. Yang, X. J. Cai, et al. 2009. Synthesis and antiviral activities of chiral thiourea derivatives containing an α-aminophosphonate moiety. J. Agric. Food Chem. 57: 1383-1388.   DOI   ScienceOn
10 De Logu, A., G. Loy, M. L. Pellerano, L. Bonsignore, and M. L. Schivo. 2000. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antivir. Res. 48: 177-185.   DOI   ScienceOn
11 Garozzo, A., R. Timpanaro, B. Bisignano, P. M. Furneri, G. Bisignano, and A. Castro. 2009. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett. Appl. Microbiol. 49: 806-808.   DOI   ScienceOn
12 Gooding, G. V. J. and T. T. Hebert. 1967. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57: 1285-1287.
13 Loizzo, M. R., A. M. Saabb, R. Tundisa, G. A. Stattia, F. Menichinia, I. Lamprontic, et al. 2008. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 5: 461-470.   DOI   ScienceOn
14 Lukas, B., C. Schimiderer, C. Franz, and J. Noak. 2009. Composition of essential oil compounds from different Syrian populations of Origanum syriacum L. (Lamiaceae). J. Agric. Food Chem. 57: 1362-1365.   DOI   ScienceOn
15 Hayashi, K., N. Imanishi, Y. Kashiwayama, A. Kawano, K. Terasawa, Y. Shimada, and H. Ochiai. 2007. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antivir. Res. 74: 1-8.   DOI   ScienceOn
16 Hedin, P. A., R. M. Hollingworth, E. P. Masler, J. Miyamoto, and D. G. Thompson. 1997. Phytochemicals for Pest Control. American Chemical Society, Washington.
17 Murray, B. I. 2000. Plant essential oils for pest and disease management. Crop Prot. 19: 603-608.   DOI   ScienceOn
18 Muthaiyan, A., E. M. Martin, S. Natesan, P. G. Crandall, B. J. Wilkinson, and S. C. Ricke. 2012. Antimicrobial effect and mode of action of terpeneless cold-pressed valencia orange essential oil on methicillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 112: 1020-1033.   DOI   ScienceOn
19 Othman, B. A. and S. A. Shoman. 2004. Antiphytoviral activity of the Plectranthus tenuiflorus on some important viruses. Int. J. Agric. Biol. 6: 843-849.
20 Pajohi, M. R., H. Tajik, A. A. Farshid, and M. Hadian. 2011. Synergistic antibacterial activity of the essential oil of Cuminum cyminum L. seed and nisin in a food model. J. Appl. Microbiol. 110: 943-951.   DOI   ScienceOn
21 Ritzenthaler, C. 2005. Resistance to plant viruses: Old issue, new answer. Curr. Opin. Biotechnol. 16: 118-122.   DOI   ScienceOn
22 Pandey, M. P., J. Prasad, and L. P. Awasthi. 1988. Antiviral effect of the essential oils from lemon grass (Cymbopogon flexuosus), mentha (Mentha arvensis) and vetiver (Vetiveria zizanoides), In Purshotam Kaushik (ed.). Indigenous Medicinal Plants Including Microbes and Fungi, 2nd Ed. Today & Tomorrow's printers and Publishers, New Dehli, pp. 55-58.
23 Schnitzler, P., A. Schuhmacher, A. Astani, and J. Reichling. 2008. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 15: 734-740.   DOI   ScienceOn
24 Pfleger, F. L. and R. J. Zeyen. 2008. Tomato-Tobacco Mosaic Virus Disease. University of Minnesota Extension, Saint Paul.
25 Pusztai, R., J. Hohmann, D. Rédei, H. Engi, and J. Molnár. 2008. Inhibition of human cytomegalovirus IE gene expression by dihydro-$\beta$-agarofuran sesquiterpenes isolated from Euonymus species. In Vivo 22: 787-792.
26 Sarikurkcua, C., M. S. Ozer, M. Eskici, B. Tepe, S. Can, and E. Mete. 2010. Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulis var. longicaulis. Food Chem. Toxicol. 48: 1801-1805.   DOI   ScienceOn
27 Siddiqui, Y. M., M. Ettayebi, A. M. Haddad, and M. N. AlAhdal. 1996. Effect of essential oils on the enveloped viruses: Antiviral activity of oregano and clove oils on herpes simplex virus type 1 and Newcastle disease virus. Med. Sci. Res. 24: 185-186.
28 Song, B. A., H. P. Zhang, H. Wang, S. Yang, L. H. Jin, D. Y. Hu, et al. 2005. Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. J. Agric. Food Chem. 53: 7886-7891.   DOI   ScienceOn
29 Wang, K. L., B. Su, Z. W. Wang, M. Wu, Z. Li, Y. N. Hu, et al. 2010. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J. Agric. Food Chem. 58: 2703- 2709.   DOI   ScienceOn
30 Tian, J., X. Q. Ban, H. Zeng, J. S. He, B. Huang, and Y. W. Wang. 2011. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol. 145: 464-470.   DOI   ScienceOn
31 Tolouee, M., S. Alinezhad, R. Saberi, A. Eslamifar, S. J. Zad, K. Jaimand, et al. 2010. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int. J. Food Microbiol. 139: 127-133.   DOI   ScienceOn
32 Valerija, D., B. Nada, V. Elma, and C. Dubravka. 2010. Antiphytoviral activity of Satureja montana L. ssp. variegata (Host) P. W. Ball essential oil and phenol compounds on CMV and TMV. Molecules 15: 6713-6721.   DOI
33 Yan, X. H., J. Chen, Y. T. Di, X. Fang, J. H. Dong, S. Pang, et al. 2010. Anti-tobacco mosaic virus (TMV) quassinoids from Brucea javanica (L.) Merr. J. Agric. Food Chem. 58: 1572-1577.   DOI   ScienceOn