• Title/Summary/Keyword: antisymmetric angle-ply

Search Result 32, Processing Time 0.023 seconds

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Strain Energy Characterics of Antisymmetric Angle-Ply Laminated Plates (역대칭 Angle-Ply 적층판의 변형에너지 특성에 관한 연구)

  • Park, Sung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.691-700
    • /
    • 2000
  • A powerful analytical procedure and strain energy analysis to investigate the free vibration of antisymmetric angle-ply laminated plates, having one pair of opposite edges simply supported, are develped on the basis of the Yang, Norris and Stavsky (YSN) theory. The equation of motion of the plate are solved by the use of collocation method. A range of results are presented for plates to show the effects of modulus ratio and number of layers on natural frequency. In addition, an analysis of the strain energy distributions is used as an aid for the better understanding of the vibration characteristics of the plates.

  • PDF

Behaviors of Thick Antisymmetric Angle-Ply Laminate Using the Affine Transformation (유사 변환을 이용한 역대칭 앵글 플라이 적층 후판의 거동)

  • 이영신;양명석;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.28-40
    • /
    • 1991
  • Affine transformation was used to analyze the bending, buckling and vibration behaviors of a thick antisymmetric angle-ply rectangular simply supported laminate. Introducing the generalized parameters, the comprehensive solutions are found. The generalized parameters are a generalized rigidity ratio ( $D^*1), a generalized Poisson's ratio (.epsilon.) and a principal rigidity ratio (.alpha.). Hence, the transverse deflection decreases, the uniaxial buckling load and the fundamental frequency increase with increasing $D^*1 and decreasing .alpha., but the effect of .epsilon. is negligible. With decreasing the thickness ratio, the results by the classical plate theory are more erroneous. The transverse deflection is minimum, the uniaxial buckling load and the fundamental frequency are maximum if the fiber angle is 45.deg., and number of plies is more than 4. The time and efforts can be saved to understand the behaviors of composite laminates because these results can be applied to another composite material easily.sily.

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Buckling Analysis of Anisotropic Laminated Plates with Shear Deformation (전단변형을 고려한 이방성 적층판의 좌굴해석)

  • 최용희;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.361-368
    • /
    • 2001
  • This paper deals with the buckling load of antisymmetric angle-ply and cross-ply laminated rectangular plates. Buckling analysis is preformed for a simply supported, shear deformable laminated plate subjected to uniaxial compression and biaxial compression combined with uniform lateral pression. The shear deformation theory is considered to figure out a more exact behavior of laminated plates exactly. The purposes of this study are to formulate anisotropic laminated plates with shear deformation and to investigate the buckling load according to the various variables of laminated plates by using the exact solutions for anisotropic laminated plates having simply supported boundary.

  • PDF

Critical Buckling Loads of Laminated Composites under Cylindrical Bending (원통형 굽힘을 받는 적층판의 임계좌굴 하중)

  • Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

Random Vibration Analysis of Composite Laminated Beams (불규칙 진동을 받는 복합 적층보의 응력 및 파괴해석)

  • Jeon, Yong-Sun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.29-36
    • /
    • 2002
  • The responses of composite laminated beams modeled with finite element and excited by stochastic loading are studied. The cantilevered laminated beam having a 5 ply configuration is considered. The beam is 1m long, 0.1m wide, and 0.02m thick, yielding a length to thickness ratio of L/h=50. The laminated beams was assumed to be made of Born Epoxy. The four nodes at the free end of the cantilever were loaded with identical zero-mean white noise excitations. Stress and failure analysis loaded with identical zero-mean white noise excitations is carried out. Along with the obtained results, comparison and discussion are presented for the cases of symmetric-ply, antisymmetric-ply, angle-ply, and cross-ply laminated beams.

  • PDF

Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions (전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5347-5356
    • /
    • 2011
  • In this paper, we compared various shear deformation functions for modelling anti-symmetric composite sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, As a result, reasonable accuracy for investigated problems are predicted. Particularly, The present results show that the use of exponential shear deformation theory provides very good solutions for composite sandwich plates.

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.