• Title/Summary/Keyword: antisense technology

Search Result 29, Processing Time 0.02 seconds

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

Whole Transcriptomic Analysis of Bacillus anthracis during Hydrogen Peroxide Decontamination (과산화수소 제독 과정에서의 탄저균 전사체 분석)

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Yoon, Sung Nyo;Kim, Yun Ki;Kim, Min Cheol;Ryu, Sam Gon;Lee, Hae Wan;Chai, Young Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.478-483
    • /
    • 2015
  • Decontamination of biological agents utilizes hydrogen peroxide($H_2O_2$) for its effectiveness and safeness. Bacillus anthracis is a major target for $H_2O_2$ decontamination. To assess the effect of $H_2O_2$ on B. anthracis and identify biomarkers for decontamination, whole transcriptomic profiling of $H_2O_2$-treated B. anthracis was performed. Here we identified deregulation in stress response genes, transcription factors and cellular homeostasis genes. We also found that expression of antisense RNAs increased in B. anthracis during decontamination. We postulate that B. anthracis prioritizes survival and adaptation in response to $H_2O_2$ treatment by changing its gene expression pattern.

The Preliminary Study on the Structure of Cop Protein by CD and NMR

  • Kim, Yun-Kyong;Park, Sang-Ho;Lee, Jee-Hyun;Kwak, Jin-Hwan;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.100-108
    • /
    • 1999
  • Cop protein is the transcription repressor protein in rolling circle replication plasmid. With antisense RNA, Cop protein controls the copy number of plasmid. Cop family proteins have been found in various plasmids. Among Cop family proteins, Cop studied in this paper consists of 55 amino acids (Mw. 6,400), and was known to have trimer structure. Since no structural facts are elucidated, we have carried out preliminary experiments aimed at the elucidation of its three dimensional structure. The secondary structure of Cop is studied by CD and NMR. To solve the aggregation of Cop at high concentration, we tested various detergents and salts. The addition of detergents and salts could not solve the aggregation problem. However, we found that concentration is important in solving the aggregation problem. We knew that 0.18mM in 50mM potassium phosphate without any other ingredients is maximum concentration not to aggregate. Wa also investigated the pH dependence of Cop protein, and knew that Cop protein is more stable in acid state. At various temperatures, 15N-1H HSQC spectra were measured in order to find the optimal experimental condition. To enhance the peak resolution, 3D NOESY-HSQC spectrum is acquired. Since there are NOE peaks in the NH-NH region, we knew that Cop protein has $\alpha$-helical content, which was also confirmed by CD.

  • PDF

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

Rapid Detection of Enterotoxigenic Staphylococcus aureus by Polymerase Chain Reaction (중합효소 연쇄반응에 의한 식중독성 황색포도상구균의 신속한 검출)

  • Kim, Eun-Seon;Jhon, Deok-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1001-1008
    • /
    • 1996
  • Staphylococcal food poisoning is the major cause of bacterial food poisoning occurring in this country. Therefore government regulates commercial foods through Official Dictionary of Food that there should be free of enterotoxigenic Staphylococcus aureus in Korean rice cakes, bread, and a box lunch. Since at least 5 days are required to identify the S. aureus by the official method in the Dictionary it is difficult to prevent the food poisoning and the investigation of the outbreaks. In this report an improved determination method of the S. aureus has been developed using polymerase chain reaction (PCR) technique. Sense and antisense primers for specific amplification of genes encoding staphylococcal enterotoxins were designed and synthesized for the PCR. Rapid chromosomal DNA isolation method was also developed from S. aureus using lysostaphin. The PCR condition was developed as follows. Reaction solution $(50\;{\mu}l)$ consisted of target DNA $2\;{\mu}l$ (about 20ng), 10X buffer $5\;{\mu}l$, primer 100pmole, dNTP (10 mM) $4\;{\mu}l$ and Taq DNA polymerase 2.5 unit in a thin-wall tube. Operation condition of the PCR was 5 min pre-denaturation at $94^{\circ}C$, 15 sec denaturation at $94^{\circ}C$, 15 sec annealing at $50^{\circ}C$, 20 sec extension at $72^{\circ}C$, and 5 min post-extension at $72^{\circ}C$, and 30 cycles of denaturation-annealing- extension. Using the PCR with Perkin Elmer GeneAmp PCR system 2400, types of enterotoxigenic S. aureus could be identified from Ddok or bread in a day.

  • PDF

Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis

  • HYUN‑KYUNG LEE;TAYABA ISMAIL;CHOWON KIM;YOUNI KIM;JEEN‑WOO PARK;OH‑SHIN KWON;BEOM‑SIK KANG;DONG‑SEOK LEE;TAEJOON KWON;TAE JOO PARK;HYUN‑SHIK LEE
    • International Journal of Molecular Medicine
    • /
    • v.43 no.2
    • /
    • pp.1105-1113
    • /
    • 2019
  • Epigenetic modifier lysine demethylase 3a (Kdm3a) specifically demethylates mono- and di-methylated ninth lysine of histone 3 and belongs to the Jumonji domain-containing group of demethylases. Kdm3a serves roles during various biological and pathophysiological processes, including spermatogenesis and metabolism, determination of sex, androgen receptor-mediated transcription and embryonic carcinoma cell differentiation. In the present study, physiological functions of Kdm3a were evaluated during embryogenesis of Xenopus laevis. Spatiotemporal expression pattern indicated that kdm3a exhibited its expression from early embryonic stages until tadpole stage, however considerable increase of kdm3a expression was observed during the neurula stage of Xenopus development. Depleting kdm3a using kdm3a antisense morpholino oligonucleotides induced anomalies, including head deformities, small-sized eyes and abnormal pigmentation. Whole-mount in situ hybridization results demonstrated that kdm3a knockdown was associated with defects in neural crest migration. Further, quantitative polymerase chain reaction revealed abnormal expression of neural markers in kdm3a morphants. RNA sequencing of kdm3a morphants indicated that kdm3a was implicated in mesoderm formation, cell adhesion and metabolic processes of embryonic development. In conclusion, the results of the present study indicated that Kdm3a may serve a role in neural development during Xenopus embryogenesis and may be targeted for treatment of developmental disorders. Further investigation is required to elucidate the molecular mechanism underlying the regulation of neural development by Kdm3a.

Analysis of Single Nucleotide Polymorphism of eNOS Genes in Korean Genome (한국인의 eNOS 유전자 SNP 분석)

  • Lee, Hyung-Ran;Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.181-185
    • /
    • 2014
  • We identified SNPs (single nucleotide polymorphisms) for endothelial nitric oxide synthase (eNOS) genes in the Korean genome. eNOS is present in the vascular endothelium, platelets, and several other cell types that continuously produce modest amounts of NO. Endothelium-derived NO plays a key role in the regulation of vascular tone, and the impaired effects of NO on the cardiovascular system appear to be responsible for coronary atherosclerosis and thrombosis. In recent studies, a missense variant within exon 7 of the eNOS gene in patients with coronary spastic angina-GAG to GAT substitution, which results in the replacement of glutamic acid by aspartic acid (Glu298Asp [G894T])-has been identified and is known to be significantly associated with coronary spasm. We prepared PCR primers based on sequences in Genbank. Primers were prepared for normal and SNPs separately, as reported for other Asian countries, such as G894T. Their sequences were different only at the 3' ends so that primer extension could only by possible when base pairs between templates and primers matched. We also employed ARMS (Amplification Refractory Mutation System) technology to improve the specificity of the PCR reaction. In conclusion, we were able to demonstrate the eNOS G894A polymorphism in Korean gemone. This study should facilitate research on the cause of myocardial infarction and development on further therapy at the genetic level.

Relationships of the Lithium-Induced Growth Inhibition of C6 Rat Glioma Cell to Expression of the Insulin-like Growth Factor System Components (C6 Rat Glioma Cell에서 리튬에 의한 성장 억제와 Insulin-like Growth Factor System Components의 발현과의 관계)

  • Kim, I.A.;Jin, E.J.;Cho, E.J.;Sohn, S.H.;Lee, C.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.563-570
    • /
    • 2004
  • The insulin-like growth factor(IGF) system, consisting of IGFs-I and -II ligands and their receptors and six IGF-binding proteins(IGFBPs), plays an important role in survival, proliferation and differentiation of a variety of cell types. Lithium is a known modulator of survival and proliferation of many cell types in vitro. The present study was undertaken to investigate the relationship between LiCI-induced changes in cell survival and growth and the expression of the IGF system components in C6 rat glioma cell line which, besides IGF-I and its receptor, is known to express IGFBP-3 as its major IGF carrier. When C6 cells were cultured for 24h in the absence or presence of 2mM or 5mM LiCl in a 10% serwn-containing medium, the viability and the number of cells were not affected by added lithium. In 72-h culture, however, C6 cells clearly exhibited a dose-dependent response to added LiCl. The cells cultured for 72h in the presence of 0, 2mM and 5mM LiCl exhibited a typical mitotic, a growth-arrested and an apoptotic appearances, respectively. Moreover, the apoptotic cells were accompanied by reduced expression of IGF-I, IGF-I receptor and IGFBP-3 as examined by semi-quantitative reverse transcription-polymerase chain reaction. Interestingly, blockade of IGFBP-3 mRNA translation by addition of 101${\mu}M$ IGFBP-3 anti-sense oligodeoxyribonucleotide in serum-free, 24-h culture resulted in a decrease in the number of cells as well as relative abundance of the target mRNA. In summary, results suggest that the cytotoxic effect of lithium in C6 cell is likely to be mediated, in part, by suppression by this agent of the expression of the IGF system components. In this regard, IGFBP-3 may play at least a 'permissive' role in normal proliferation of this cell.

Characterization of Chemical Composition in Poplar wood (Populus deltoides) by Suppression of CCoAOMT Gene Expression (CCoAOMT 유전자 발현 억제에 의한 현사시나무의 화학조성 변화)

  • Eom, In-Yong;Kim, Kwang-Ho;Lee, Soo-Min;Yi, Yong-Sub;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.213-222
    • /
    • 2010
  • In this study, chemical compositions - holocellulose, lignin and monomeric sugars - were characterized with two poplar wood cell walls, one of which was grown at normal condition (CPW) and the other was genetically modified by antisence suppression of CCoAOMT gene expression (ACPW). Milled wood lignins were isolated from CPW and ACPW and subjected to methoxyl group, DFRC, Py-GC/MS, GPC, $^{13}C$-NMR analysis, respectively. There were few differences in holocellulose contents in both cell walls, which were determined to 81.6% in CPW and to 82.3% in ACPW. However, lignin contents in ACPW was clearly decreased by the suppression of CCoAOMT gene expression. In CPW 21.7% of lignin contents was determined, while lignin contents in ACPW was lowered to 18.3%. The relative poor solubility of ACPW in alkali solution could be attributed to the reduction of lignin content. The glucose contents of CPW and ACPW were measured to 511.0 mg/g and 584.8 mg/g and xylose contents 217.8 mg/g and 187.5 mg/g, respectively, indicating that suppression of CCoAOMT gene expression could be also influenced to the formation of monomeric sugar compositions. In depth investigation for milled wood lignin (MWL) isolated from both samples revealed that the methoxyl contents at ACPW was decreased by 7% in comparison to that of CPW, which were indirectly evidenced by $^{13}C$-NMR spectra and Py-GC/MS. According to the data from Py-GC/MS S/G ratios of lignin in CPW and ACPW were determined to 0.59 and 0.44, respectively. As conclusive remark, the biosynthesis of syringyl unit could be further influenced by antisense suppression of CCoAOMT during phenylpropanoid pathway in the plant cell wall rather than that of guaiacyl unit.