• Title/Summary/Keyword: antioxidant compound

Search Result 821, Processing Time 0.028 seconds

Anti-inflammatory Efficacy of HK Shiitake Mushroom Mycelium in LPS-treated RAW 264.7 Cells Through Down-regulation of NF-κB Activation (LPS로 활성화한 RAW 264.7 세포에서 HK표고버섯균사체의 NF-κB 활성 억제를 통한 항염증 효과)

  • Song, Chae Yeong;Oh, Tae Woo;Kim, Hoon Hwan;Lee, Yu Bin;Kim, Jeong Ok;Kim, Gon Sup;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.491-500
    • /
    • 2022
  • HK shiitake mushroom mycelium (HKSMM), containing 14% β-glucan, is a health functional food ingredient individually approved by the Korea Ministry of Food and Drug Safety for liver health. The anti-inflammatory effect of a 50% aqueous ethanol extract of HKSMM (designated HKSMM50) was studied in RAW 264.7 macrophage cells treated with lipopolysaccharide (LPS). An active hexose correlated compound (AHCC) was used as a positive control. LPS-activated RAW 264.7 cells were treated with HKSMM50 and AHCC (0, 20, 100, 500 ㎍/ml) and cultured for 24 hr. Inflammation-related elements in the supernatant were measured using enzyme-linked immunosorbent assay (ELISA) kits, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in the cells was analyzed by Western blotting. The HKSMM50 lowered iNOS and COX-2 protein expressions, and nuclear factor-kappa B (NF-κB), nitric oxide (NO) and prostaglandin E2 (PGE2) contents in a concentration-dependent manner as compared to LPS treatment. Similarly, the HKSMM50 lowered the content of pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4) and interleukin-6 (IL-6) contents and increased the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The efficacy of the AHCC treatment was similar to that of the HKSSM50 treatments. These results indicate that HKSMM50 showed an anti-inflammatory effect in LPS-treated RAW 264.7 cells by down-regulation of NF-κB signaling and suggest that HKSMM could be used as a health functional food ingredient to help improve immune function.

Analysis of nutritional contents and useful functional materials for finding breeding resources in Flammulina velutipes (팽이 기능성 육종소재 발굴을 위한 영양성분 및 유용 기능성 물질 분석)

  • Ji-Hoon, Im;Minji, Oh;Youn-Lee, Oh;Min-Sik, Kim;Jong-Won, Lee
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Flammulina velutipes, known as winter mushroom in the family of Physalacriaceae, is the main edible and export mushroom with the third highest production after oyster and king oyster mushroom in Korea. However, as normal consumers regard F. velutipes as a simple subsidiary material, there is a limitation to increasing mushroom demand. In order to overcome the consumption limit and increase the differentiation of new varieties, it is necessary to breed varieties with enhanced functionality in consideration of consumer preferences. Therefore, the study was performed to analyze nutrient components and several useful functional substances with 26 genetic resources of F. velutipes. Analyses of inorganic compound(Ca, K, Mg) and 15 amino acids revealed that Strain 4148 had the highest content among the 26 strains. Beta-glucan, which increases immune activity and polyphenol, which exert antioxidant effects were higher in non-white strains than in white strains with a small number of exceptions. Among the five fatty acids, linoleic acid(an omega-6 fatty acid) and α-linolenic acid(an omega-3 fatty acid), were detected in six mushroom strains. α-linolenic acid, which was not found in five major mushrooms including oyster mushrooms, was identified in F. velutipes. The results of HPLC analysis showed that 'Auram' (Strain 4232) and 'Baekseung'(Strain 4230) had the highest content of the stabilizing neurotransmitter GABA(15.38 ㎍/ml and 20.56 ㎍/ml, respectively) among non-white and white strains, respectively. Our findings provide useful information for breeding F. velutipes to obtain strains with enhanced functionality.

The Gastroprotective and Antioxidative Effects of Lonicera japonica water extract on HCl/ethanol-induced Gastric Mucosa Damage in Rats (인동(忍冬) 열수 추출물의 항산화 효과 및 HCl-Ethanol로 유도된 위염 동물 모델에서의 위 점막 손상 보호 효과)

  • Sim, Mi-Ok;Lee, Hyun Joo;Jang, Ji Hun;Jung, Ho-Kyung;Yang, Beodul;Woo, Kyeong Wan;Hwang, Taeyeon;Kim, Sunyoung;Nho, Jonghyun;Cho, Hyun-Woo
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.57-62
    • /
    • 2019
  • Objective : Gastritis is a major complication of gastrointestinal disease. Lonicera japonica is used in folk medicine to treat different diseases such as exopathogenic wind-heat, epidemic febrile diseases, sores, carbuncles and some infectious diseases. Therefore, this study examined the effects of Lonicera japonica water extract (LJE) on HCl/ethano-linduced acute gastric ulceration and anti-oxidants properties. Methods : LC-ESI-IT-TOF MS was employed for rapid identification of major compound from LJE. The antioxidant activities were evaluated through total polyphenol and flavonoid contents and radical scavenging assays and superoxide dismutase (SOD)-like activity. SD rats were randomly divided into five different groups including the normal group, ulcer group, positive group (20 kg/mg of omeprazole, ip), and experimental groups (100 kg/mg and 500 kg/mg of LJE, ip). Results : 4,5-Dicaffeoyl quinic acid, loganic acid, secologanic acid, sweroside, loganin, vogeloside were identified based on the detection of the molecular ion with those of literature data. The LJE was possessed free radical scavenging activities such as DPPH (IC50=189.7 ㎍/㎖), ABTS (IC50=164.5 ㎍/㎖), and SOD-like activity (IC50=405.02 ㎍/㎖). Macroscopic and histological analyses showed LJE treated group were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate and prostaglandin E2 levels were increased in rats treated with LJE. Conclusion : The present study has demonstrated the antioxidantive and gastroprotective effect of LJE, these findings suggested that LJE has the potential for use in treatment of gastric disorders.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

Comparison of Plant Growth Characteristics and Biological Activities of Four Asparagus Cultivars by Cultural Method (재배방법에 따른 아스파라거스 4 품종의 생장과 생리활성 비교)

  • Kim, Ho Cheol;Heo, Buk Gu;Bae, Jong Hyang;Lee, Seung Yeob;Kang, Dong Hyeon;Ryu, Chan Seok;Kim, Dong Eok;Choi, I Jin;Ku, Yang Gyu
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.495-503
    • /
    • 2016
  • In the present study, we investigated the plant growth characteristics and biological activity of four asparagus cultivars grown using two cultural methods and tested the possibility of domestic open field. The number of shoots, buds, roots, shoot and root fresh and dry weights, and total dry weight of the four asparagus cultivars grown in a plastic house were higher than those of the same cultivars grown in an open field. Of the cultivars grown in the open field, Jersey Giant had greater shoot number than the other cultivars. In plastic house cultivation, the number of buds in Jersey Supreme was greater than the other cultivars. The total flavonoid content of the Jersey Giant was greater than the other cultivars, but cultural method was unaffected. The total polyphenol contents in asparagus cultivars grown in the plastic house were higher than those of cultivars grown in the open field. The total polyphenol content of the Jersey Giant grown the plastic house was significantly higher than those of other cultivars. Antioxidant activity such as catalase (CAT) and peroxidase (POX) did not differ significantly with cultural methods and among the cultivars. Ascorbate peroxidase (APX) activity of asparagus cultivars grown in the open field was higher than that of cultivars grown in the greenhouse; the highest APX activity was detected in UC157. Thus, greenhouse cultivation is expected to improve plant growth characteristics and biological activities of asparagus cultivars; each cultural method should be considered when selecting a suitable cultivar for high yield and high bioactive compound content.

Protective effect of ethyl acetate fraction from Actinidia arguta sprout against high glucose-induced in vitro neurotoxicity (포도당으로 유도된 in vitro 뇌신경세포 독성에 대한 다래 순 아세트산에틸 분획물의 보호 효과)

  • Yoo, Seul Ki;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Su Bin;Han, Hye Ju;Kim, Chul-Wo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.517-527
    • /
    • 2018
  • The current study investigated in vitro anti-diabetic and neuroprotective effects of the ethyl acetate fraction in Actinidia arguta sprouts (EFAS), on $H_2O_2$ and high glucose-induced cytotoxicity in human neuroblastoma MC-IXC cells. EFAS had high total phenolic and total flavonoid contents. An assessment of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity of EFAS, as well as its potential for inhibiting malondialdehyde production, indicated that EFAS may possess significant antioxidant properties. EFAS exerted inhibitory effects on ${\alpha}-glucosidase$ via glycemic regulation which forms advanced glycation end products. In addition, EFAS exhibited significant acetylcholinesterase inhibitory effects. Moreover, EFAS displayed protective effects against $H_2O_2$ and high glucose-induced cell death, and inhibited the generation of reactive oxygen species in MC-IXC cells. Finally, the main physiological compound of EFAS was identified via high performance liquid chromatography as a rutin.

Biological activities of Aster scaber extracts (참취(Aster scaber) 추출물의 생리활성)

  • Lee, Eun-Ho;Park, HyeJin;Kim, Na-Hyun;Hong, Eun-Jin;Park, Mi-Jung;Lee, Seon-Ho;Kim, Myung-Uk;An, Bong-Jeun;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.393-401
    • /
    • 2016
  • The phenolic compounds extracted from Aster scaber were examined for their biological activities owing to their potential use in health and beauty food products. The phenolic content in water and 60% ethanol extracts were $11.1{\pm}0.11$ and $4.18{\pm}0.05mg/g$, respectively. The DPPH radical scavenging activities of the water and ethanol extracts were 87% and 91% at $50{\mu}g$ phenolics/mL, respectively. At the same phenolics concentration, the respective extracts showed 84% and 95% for ABTS radical decolorization activities and 95% and 97% for TBARs. The antioxidant protection factors for the water and ethanol extracts at $200{\mu}g$ phenolics/mL were 1.87 and 2.22 PF, respectively. Enzyme inhibitory activities of the water and ethanol extracts ($50{\mu}g$ phenolics/mL) were 50.8% and 69.4% on angiotensin converting enzyme, 91% and 80% on xanthine oxidase, and 24% and 89% on ${\alpha}$-amylase, respectively. The tyrosinase inhibitory activities indicating skin-whitening were 47% and 25% for the water and ethanol extracts, respectively. Anti-wrinkle effect of the water extract was relatively higher than that of the ethanol extract. These results suggest that the water and ethanol extracts of Aster scaber can be used as an ingredient in health and beauty food products.

Antioxidant, Physiological Activities, and Acetylcholinesterase Inhibitory Activity of Portulaca oleracea Extracts with Different Extraction Methods (추출방법에 따른 쇠비름의 항산화, 생리활성 및 Acetylcholinesterase 저해활성)

  • Kwon, Yu-Ri;Cho, Sung-Mook;Hwang, Seung-Pil;Kwon, Gi-Man;Kim, Jae-Won;Youn, Kwang-Sup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.389-396
    • /
    • 2014
  • The physiological properties of 70% ethanol extracts from Portulaca oleracea with different extraction methods (reflux extraction, RE; autoclave extraction, AE; low temperature high pressure extraction, LTPE) were investigated. The freeze-dried powder yields of RE, AE, and LTPE were 33.78%, 30.80%, and 11.05%, respectively. The color values of L and b were higher in LTPE, and the chroma values were higher in AE and LTPE compared to RE. The total polyphenolics and proanthocyanidin contents in LTPE were significantly higher than in other extracts. The amount of substances related to flavonoids contents was highest in RE (4.30 mg/g), followed by AE (4.06 mg/g), and LTPE (4.00 mg/g). DPPH radical scavenging ability with a concentration of 500 mg% (w/v) were in the following order; LTPE (88.87%)> RE (83.84%)> AE (80.67%). Further, the reducing power, ABTS radical scavenging ability, and nitrite scavenging activity was observed in the same tendency as seen with the DPPH radical scavenging ability. However, the ferrous ion chelating activity of RE (85.45%) and AE (83.88%) was significantly higher than that of LTPE (75.60%). ${\alpha}$-Glucosidase inhibitory activities of RE and LTPE with a concentration of 100 mg% were significantly higher than AE. Xanthine oxidase, and acetylcholinesterase inhibitory activities of LTPE were higher than the other extracts. These results suggest that the extracts from Portulaca oleracea have the potential to act as functional materials, and components of Portulaca oleracea could be effective in the prevention of Alzheimer's disease, and may be used to develop various functional food products.