• 제목/요약/키워드: antimicrobial resistant

검색결과 802건 처리시간 0.028초

Antibacterial activity of Chamaecyparis obtuse Extract and Profile of Antimicrobial Agents Resistance for Methicillin-Resistant Staphylococcus aureus

  • Jong Hwa Yum
    • 대한의생명과학회지
    • /
    • 제30권1호
    • /
    • pp.32-35
    • /
    • 2024
  • In vitro antimicrobial activities of hot water extracts of Chamaecyparis obtuse, for methicillin-resistant Staphylococcus aureus (MRSA) was compared to commonly used conventional antimicrobial agents. All MRSA was susceptible to linezolid or vancomycin, but also to erythromycin. MIC range and MIC90 to erythromycin, clindamycin, levofloxacin, tetracycline for MRSA were each 4 ㎍/mL, 2 ~ >128 ㎍/mL, ≤0.06 ~ >128 ㎍/mL, 0.25 ~ >128 ㎍/mL, 0.25~64 ㎍/mL and 4 ㎍/mL, .128 ㎍/mL, >128 ㎍/mL, >128 ㎍/mL, 64 ㎍/mL. The hot water extracts of leaf of C. obtuse had the lowest MIC range, MIC50, and MIC90 (0.125 µL/mL) for the MRSA tested, and it was possible more potent than various conventional antimicrobial agents. Screen antibacterial drug candidate with high antibacterial activity such as derivatives of C. obtuse leaf extract such as terpinen-4-ol or using combined therapy with commercialized antibacterial agents will likely be helpful in treating refractory MRSA infections.

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents

  • Arora, Daljit Singh;Onsare, Jemimah Gesare
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.152-161
    • /
    • 2014
  • The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.

닭과 돼지에서 분리한 Salmonella Typhimurium의 항생제 내성 특성 분석 (Characteristics of antimicrobial resistant Salmonella Typhimurium isolates from chicken and pigs)

  • 문자영;김원경;이건희;나방주;고재천;심균섭;;허진
    • 한국동물위생학회지
    • /
    • 제39권1호
    • /
    • pp.51-57
    • /
    • 2016
  • Fifty and forty two Salmonella enterica subspecies enterica serovar 52 Typhimurium (ST) strains were isolated from chicken and pigs, respectively, collected from markets throughout Korea from 2008 to 2011. The isolates were investigated for the presence of antimicrobial resistance and multi-drug patterns. All 50 ST isolates from chicken and 42 ST isolates from pigs were resistant to at least one of 13 antibiotics used in this study, 92.0% of ST isolates from chicken and 88.1% of ST isolates from pigs were resistant to three or more antimicrobials. As many as 3 isolates of ST isolates from chicken were resistant to 11 of 13 antimicrobials tested in this study. Only one isolate of ST isolates from pigs was resistant to 10 of 13 antimicrobials. The ACSSuT resistance phenotype was observed in 34% of the 50 isolates and 23.8% of the 42 isolates. Especially, 1 isolate from pigs had the ACSSuTAu. The high rate of antimicrobial-resist and multi-drug resistant (MDR) ST isolation may give rise to crucial public health problems. Therefore, control of antimicrobial use, and continuous monitoring of antimicrobial resistance and MDR patterns among Salmonella isolates in chicken and pig farms is necessary to ensure public health.

경북지역의 닭으로부터 CTX-M-14 생성 장내세균 분리동정 (CTX-M-14 Producing Enterobacteriaceae Isolated from Chickens at Gyeongsang Provinces)

  • 성지연;권택영
    • 대한임상검사과학회지
    • /
    • 제48권2호
    • /
    • pp.118-123
    • /
    • 2016
  • 지난 반세기 동안 세균 감염증 치료 또는 성장촉진을 목적으로 가금류에게 광범위하게 항균제를 사용해 왔다. 그러나 항균제 내성의 증가는 사람에게 보편적으로 사용되는 항균제들에 대한 내성을 유도하여 치료를 위한 항균제 선택에 제약을 주어 치료에 어려움을 가중시키고 있다. 본 연구에서는 경상도 지역에서 사육된 닭으로부터 분리된 장내세균을 대상으로 ${\beta}-lactam$, quinolone, 및 aminoglycoside 계열 항균제에 대한 내성유전자의 빈도를 조사하였다. 그리고 항균제 감수성 검사를 시행하여 내성유전자와의 관련성을 알아보았다. 본 연구에서 총 43균주의 장내세균이 40마리의 닭의 맹장으로부터 분리되었으며 디스크확산법을 이용하여 항균제 감수성 검사를 시행하였다. 그리고 중합효소연쇄반응과 염기서열분석을 통해 플라스미드 매개 항균제 내성 유전자를 조사하였다. 총 43균주 중 2균주가 $bla_{CTX-M-14}$ 유전자를 포함하고 있었으며 qnrS 및 aac(6')-Ib-cr 유전자도 각각 2균주와 5균주에서 확인되었다. 총 43균주를 대상으로 항균제 감수성을 조사한 결과 cefepime, ceftazidime, 및 cefaclor를 제외한 모든 항균제에 대해 0.0%부터 23.3%까지의 낮은 감수성률을 보였다. 본 연구에서는 닭으로부터 분리된 대장균에 플라스미드 매개 항균제 내성유전자가 확산되어 있음을 확인하였다. 항균제 내성 유전자의 확산을 막기 위해서는 지속적인 항균제 내성유전자의 조사와 감시가 필요할 것으로 사료된다.

금강 하구 해역의 해수에서 분리한 장염비브리오(Vibrio parahaemolyticus) 균의 특성 및 항균제 내성 (Characterization and Antimicrobial Resistance of Vibrio parahaemolyticus Strains Isolated from Seawater of Geum River Estuary Area, West Coast of Korea)

  • 이신혜;김희대;박권삼
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.850-857
    • /
    • 2022
  • Seventy-five Vibrio parahaemolyticus isolates from the surface seawater of the Geum River Estuary area, on the west coast of Korea, were analyzed for the presence of virulence genes and susceptibility to 17 different antimicrobials. All 75 isolates were examined for the presence of two virulence genes (tdh or trh) using polymerase chain reaction; Only one of the isolates possessed the tdh or trh gene. According to the results of disk diffusion susceptibility tests, all of the strains were resistant to penicillin G, 92.0% were resistant to ampicillin, 82.7% were resistant to amoxicillin, 2.7% were resistant to ciprofloxacin, 2.7% were resistant to trimethoprim, 1.3% were resistant to cephalothin, and 1.3% were resistant to erythromycin. However, all of the strains were susceptible to amikacin, cefoxitin, chloramphenicol, gentamycin, kanamycin, nalidixic acid, nitrofurantoin, rifampin, streptomycin, and tetracycline. The average minimum inhibitory concentrations for ampicillin for V. parahaemolyticus was 557.6 ㎍/mL. These results not only provide novel insight into the necessity for seawater sanitation in Geum river estuary area, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF

A Study on Antimicrobial Activity of Lysimachia clethroides Duby Root Extracts against Methicillin-resistant Staphylococcus aureus

  • Joung, Dae Ki;Kwon, Dong Yeul;Shin, Dong Won
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.719-724
    • /
    • 2018
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium responsible for a number of infections in humans that are difficult to treat, and as a result, is a substantial contributor to morbidity and mortality. In the present study, in search of natural products capable of inhibiting this multidrug-resistant bacterium, we investigated the antimicrobial activity of Lysimachia clethroides Duby root. The antibacterial activities of EtOH extract of Lysimachia clethroides Duby root and its n-hexane, EtOAc, n-BuOH and water fractions were evaluated against 15 strains of methicillin-resistant staphylococcus aureus (MRSA) and 1 standard methicillin-susceptible S. aureus (MSSA) strain by using the minimal inhibitory concentrations (MICs) assay, colorimetric assay using MTT test, checkerboard dilution test. Antimicrobial activity of n-hexane fraction of Lysimachia clethroides Duby root was remarkable. Against the 16 strains, the minimum inhibitory concentrations (MICs) were in the range of $31.25-62.5{\mu}g/ml$ and FICI values for n-hexane fraction of Lysimachia clethroides Duby root+AM and n-hexane fraction of Lysimachia clethroides Duby root+OX were checkerboard method performed using the MRSA, MSSA and one clinical isolate strains via MICI 0.12-1 and 0.25-0.75, showing the increase of synergistic effect. When combined together, these antibiotic effects were dramatically increased. These effective combinations could be new promising agents in the management of MRSA.

남해안 어류양식장에서 분리 된 Enterococcus Faecalis와 E. faecium의 항균제 감수성 비교 (Antimicrobial Susceptibility Pattern of Enterococcus faecalis and E. faecium from Fish Farms in the Southern Coast of Korea)

  • 오은경;손광태;유홍식;김지회;이태식;이희정
    • 한국수산과학회지
    • /
    • 제41권6호
    • /
    • pp.435-439
    • /
    • 2008
  • The antimicrobial resistance of 160 strains of Enterococcus faecalis and 173 strains of E. faecium to 12 antimicrobial agents was investigated. The test strains were isolated from 126 wild seawater and farmed fish, including olive flounder (Paralichthys olivaceus), black rock fish (Sebastes schlegeli), red sea bream (Pagrus major), and sea bass (Lateolabrax japonicus), in 2005 and 2006. Overall, 91.9% of the E. faecalis isolates and 88.4% of the E. faecium isolates showed antimicrobial resistance to at least one antimicrobial agent. The pattern of antimicrobial resistance of the isolates differed little according to the species of fish. The percentage of E. faecalis and E. faecium with specific antimicrobial resistance differed according to the sample source. For the isolates from farmed fish samples, 66.7% of E. faecalis were tetracycline resistant and 54.5% of E. faecium were erythromycin resistant. By contrast, in the wild fish seawater samples, 92.0% of E. faecalis were rifampin resistant and 88.5% of E. faecium were tetracycline resistant.

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene

  • Wang, Tieshan;Su, Jianrong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2043-2050
    • /
    • 2016
  • Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii. Nineteen multidrug-resistant A. baumannii strains were clinically isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii. The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis. Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.