DOI QR코드

DOI QR Code

CTX-M-14 Producing Enterobacteriaceae Isolated from Chickens at Gyeongsang Provinces

경북지역의 닭으로부터 CTX-M-14 생성 장내세균 분리동정

  • Sung, Ji Youn (Department of Biomedical Laboratory Science, Far East University) ;
  • Kwon, Taek Young (Department of Biomedical Laboratory Science, Far East University)
  • 성지연 (극동대학교 임상병리학과) ;
  • 권택영 (극동대학교 임상병리학과)
  • Received : 2016.04.29
  • Accepted : 2016.05.11
  • Published : 2016.06.30

Abstract

Antimicrobial agents have been used in poultry for treatment of bacterial infections or additives over the past half century. However, increasing antimicrobial resistance has led to selective pressure for therapeutic use in humans and made treatment of bacterial infection more difficult. In this study, we examined the prevalence of plasmid mediated antimicrobial resistant determinants for resistance to ${\beta}-lactam$, quinolone, and aminoglycoside in Enterobacteriaceae isolates obtained from chickens in Gyeongsang provinces, and correlation between the resistant genes and antimicrobial resistance rate was also assessed. A total of 43 Enterobacteriaceae isolates were recovered from 40 chickens at Gyeongsang provinces in Korea. Antimicrobial susceptibility was determined by disk diffusion method. PCR and DNA sequencing were performed to characterize the antimicrobial resistant genes. Of the 43 Enterobacteriaceae isolates tested, 2 isolates harbored $bla_{CTX-M-14}$ gene, and 2 and 5 strains contained qnrS and aac(6')-Ib-cr genes, respectively. A total of 43 isolates displayed a relatively lower susceptible rate ranging between 0.0 and 23.3% to most of the antimicrobial agents, except cefepime, ceftazidime, and cefaclor. We confirmed that plasmid mediated antimicrobial resistant determinants were distributed in Enterobacteriaceae isolates from chickens. Investigation of the genes and monitoring of antimicrobial resistance rate is required to prevent further spreading of antimicrobial resistant genes among Enterobacteriaceae isolates.

지난 반세기 동안 세균 감염증 치료 또는 성장촉진을 목적으로 가금류에게 광범위하게 항균제를 사용해 왔다. 그러나 항균제 내성의 증가는 사람에게 보편적으로 사용되는 항균제들에 대한 내성을 유도하여 치료를 위한 항균제 선택에 제약을 주어 치료에 어려움을 가중시키고 있다. 본 연구에서는 경상도 지역에서 사육된 닭으로부터 분리된 장내세균을 대상으로 ${\beta}-lactam$, quinolone, 및 aminoglycoside 계열 항균제에 대한 내성유전자의 빈도를 조사하였다. 그리고 항균제 감수성 검사를 시행하여 내성유전자와의 관련성을 알아보았다. 본 연구에서 총 43균주의 장내세균이 40마리의 닭의 맹장으로부터 분리되었으며 디스크확산법을 이용하여 항균제 감수성 검사를 시행하였다. 그리고 중합효소연쇄반응과 염기서열분석을 통해 플라스미드 매개 항균제 내성 유전자를 조사하였다. 총 43균주 중 2균주가 $bla_{CTX-M-14}$ 유전자를 포함하고 있었으며 qnrS 및 aac(6')-Ib-cr 유전자도 각각 2균주와 5균주에서 확인되었다. 총 43균주를 대상으로 항균제 감수성을 조사한 결과 cefepime, ceftazidime, 및 cefaclor를 제외한 모든 항균제에 대해 0.0%부터 23.3%까지의 낮은 감수성률을 보였다. 본 연구에서는 닭으로부터 분리된 대장균에 플라스미드 매개 항균제 내성유전자가 확산되어 있음을 확인하였다. 항균제 내성 유전자의 확산을 막기 위해서는 지속적인 항균제 내성유전자의 조사와 감시가 필요할 것으로 사료된다.

Keywords

References

  1. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. blaVIM-2 cassette-containing novel integrons in metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother. 2002;46:1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  2. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-${\beta}$-lactamase gene, $bla_{(SIM-1)}$, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005;49:4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005
  3. Kwon YI, Kim TW, Kim HY, Chang YH, Kwak HS, Woo GJ, et al. Monitoring of antimicrobial resistant bacteria from animal farm environments in Korea. Kor J Microbiol Biotechnol. 2007;1:17-25.
  4. Rubin JE, Pitout JDD. Extended-spectrum ${\beta}$-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet Microbiol. 2014;170:10-18. https://doi.org/10.1016/j.vetmic.2014.01.017
  5. Kim MH, Lee HJ, Park KS, Suh JT. Molecular characteristics of extended spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae and the prevalence of qnr in extended spectrum beta-lactamase isolates in a tertiary care hospital in Korea. Yonsei Med J. 2010;51:768-774. https://doi.org/10.3349/ymj.2010.51.5.768
  6. Park SD, Uh Y, Lee G, Lim K, Kim JB, Jeong SH. Prevalence and resistance patterns of extended-spectrum and AmpC ${\beta}$-lactamase in Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Salmonella serovar Stanley in a Korean tertiary hospital. APMIS. 2010;118:801-808. https://doi.org/10.1111/j.1600-0463.2010.02663.x
  7. Seo MR, Park YS, Pai H. Characteristics of plasmid mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Chemotherapy. 2010;56:46-53. https://doi.org/10.1159/000290972
  8. CLSI. Performance standards for antimicrobial susceptibility testing; 16th informational supplement. CLSI document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute; 2010, p52-53.
  9. Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51:4015-4021. https://doi.org/10.1128/AAC.00576-07
  10. Hidalgo L, Hopkins KL, Gutierrez B, Ovejero CM, Shukla S, Douthwaite S, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother. 2013;68:1543-1550. https://doi.org/10.1093/jac/dkt078
  11. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60:394-397. https://doi.org/10.1093/jac/dkm204
  12. Song S, Lee EY, Koh EM, Ha HS, Jeong HJ, Bae IK, et al. Antibiotic resistance mechanisms of Escherichia coli isolates from urinary specimens. Korean J Lab Med. 2009;29:17-24. https://doi.org/10.3343/kjlm.2009.29.1.17
  13. Kang HY, Jeong YS, Oh JY, Tae SH, Choi CH, Moon DC, et al. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J Antimicrobial Chemother. 2005;55:639-644. https://doi.org/10.1093/jac/dki076
  14. Park Y, Kang HK, Bae IK, Kim J, Kim JS, Uh Y, et al. Prevalence of the extended-spectrum ${\beta}$-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J Lab Med. 2009;29:218-223. https://doi.org/10.3343/kjlm.2009.29.3.218
  15. Song W, Lee H, Lee K, Jeong SH, Bae IK, Kim JS, et al. CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum ${\beta}$-lactamase in clinical isolates of Escherichia coli from Korea. J Med Microbiol. 2009;58:261-266. https://doi.org/10.1099/jmm.0.004507-0
  16. Lautenbach E, Strom BL, Nachamkin I, Bilker WB, Marr AM, Larosa LA, et al. Longitudinal trends in fluoroquinolone resistance among Enterobacteriacae isolates from inpatients and outpatients, 1989-2000: differences in the emergence and epidemiology of resistance across organisms. Clin Infect Dis. 2004;38:655-662. https://doi.org/10.1086/381549
  17. Kim S, Sung JY, Cho HH , Kwon KC, Koo SH. Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella pneumoniae Isolates from Urine Specimens in a Tertiary-Care Hospital. J Microbiol Biotechnol. 2014;24:765-770. https://doi.org/10.4014/jmb.1306.06036
  18. Kim JH, Cho JK, Kim KS. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian Pathol. 2013;42(3):221-229. https://doi.org/10.1080/03079457.2013.779636
  19. Yang BS. Multiplex PCR for detection of quinolone resistance qnr genes in extended-spectrum ${\beta}$-lactamase producing Escherichia coli and Klebsiella pneumoniae. Korean J Clin Lab Scil. 2007;39:161-166.