• 제목/요약/키워드: antimicrobial potential

검색결과 647건 처리시간 0.019초

Prevalence and Characteristics of Antimicrobial-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Retail Meat in Korea

  • Kim, Yong Hoon;Kim, Han Sol;Kim, Seokhwan;Kim, Migyeong;Kwak, Hyo Sun
    • 한국축산식품학회지
    • /
    • 제40권5호
    • /
    • pp.758-771
    • /
    • 2020
  • This study was to investigate the prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from 4,264 retail meat samples including beef, pork, and chicken in Korea between 2013 and 2018. A broth microdilution antimicrobial susceptibility testing was performed for S. aureus. Molecular typing by multilocus sequence typing (MLST), spa typing, and pulsed-field gel electrophoresis (PFGE), was performed on mecA-positive S. aureus strain. S. aureus was isolated at a rate of 18.2% (777/4,264), of which MRSA comprised 0.7% (29 strains). MLST analysis showed that 11 out of the 29 MRSA isolates were predominantly sequence type (ST) 398 (37.9%). In addition, ST72, ST692, ST188, ST9, and ST630 were identified in the MRSA isolates. The spa typing results were classified into 11 types and showed a high correlation with MLST. The antimicrobial resistance assays revealed that MRSA showed 100% resistance to cefoxitin and penicillin. In addition, resistance to tetracycline (62.1%), clindamycin (55.2%), and erythromycin (55.2%) was relatively high; 27 of the 29 MRSA isolates exhibited multidrug resistance. PFGE analysis of the 18 strains excluding the 11 ST398 strains exhibited a maximum of 100% homology and a minimum of 64.0% homology. Among these, three pairs of isolates showed 100% homology in PFGE; these results were consistent with the MLST and spa typing results. Identification of MRSA at the final consumption stage has potential risks, suggesting that continuous monitoring of retail meat products is required.

Antimicrobial and Anti-Biofilm Activities of the Methanol Extracts of Medicinal Plants against Dental Pathogens Streptococcus mutans and Candida albicans

  • Choi, Hyoung-An;Cheong, Dae-Eun;Lim, Ho-Dong;Kim, Won-Ho;Ham, Mi-Hyoun;Oh, Myung-Hwan;Wu, Yuanzheng;Shin, Hyun-Jae;Kim, Geun-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1242-1248
    • /
    • 2017
  • Several medicinal plants are ethnomedically used in Korea as agents for treating infection, anti-inflammation, and pain relief. However, beyond typical inhibitory effects on cell growth, little is known about the potential anti-biofilm activity of these herbs, which may help to prevent cavities and maintain good oral health. This study aimed to investigate the antimicrobial and anti-biofilm activities of the methanol extracts of 37 Korean medicinal plants against dental pathogens Streptococcus mutans and Candida albicans, which synergize their virulence so as to induce the formation of plaque biofilms in the oral cavity. The antimicrobial activities were investigated by broth dilution and disk diffusion assay. The anti-biofilm and antioxidant activities were evaluated based on the inhibitory effect against glucosyltransferase (GTase) and the DPPH assay, respectively. Among 37 herbs, eight plant extracts presented growth and biofilm inhibitory activities against both etiologic bacteria. Among them, the methanol extracts (1.0 mg/ml) from Camellia japonica and Thuja orientalis significantly inhibited the growth of both bacteria by over 76% and over 83% in liquid media, respectively. Minimum inhibitory concentration (MIC) values of these methanol extracts were determined to be 0.5 mg/ml using a disk diffusion assay on solid agar media. Biofilm formation was inhibited by more than 92.4% and 98.0%, respectively, using the same concentration of each extract. The present results demonstrate that the medicinal plants C. japonica and T. orientalis are potentially useful as antimicrobial and anti-biofilm agents in preventing dental diseases.

Bioprospecting Endophytic Fungi and Their Metabolites from Medicinal Tree Aegle marmelos in Western Ghats, India

  • Mani, Vellingiri Manon;Soundari, Arockiamjeyasundar Parimala Gnana;Karthiyaini, Damodharan;Preethi, Kathirvel
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.303-310
    • /
    • 2015
  • The increasing emergence of lead drugs for the resistance produced by the pathogenic strains and arrival of new diseases have initiated the need for searching novel metabolites with best anticancer and antimicrobial properties than the existing one. With this view, the investigation was conducted for the isolation, identification, and biological evaluation of potential endophytic fungi of Aegle marmelos, a medicinal tree used for more than three decades, for curing various disorders. A total of 169 endophytic fungal strains obtained from sampling and among those 67 were pigmented strains. Upon antagonistic screening, five endophytic fungal strains exhibited antagonistic potentiality by inhibiting the pathogens. These five potent strains were characterized at molecular level by sequencing the amplified internal transcribed spacer (ITS) 1 and ITS 4 regions of rDNA and they were grouped under order Pleosporales, Eurotiales, and Capnodiales. The metabolites from the respective strains were produced in fungal culturing media and extracted using polar solvents. Further, the extracts of five endophytes manifested antimicrobial activity against tested clinical pathogens and Alternaria alternata (FC39BY), Al. citrimacularis (FC8ABr), and Curvularia australiensis (FC2AP) exhibited significant antimicrobial profile against 9 of 12 tested pathogens, showing broad spectrum activity. The antioxidant levels of all the five endophytes revealed the highest activity at least concentrations, and major activity was unveiled by the members of order Pleosporales FC2AP and FC8ABr. This research explains the value of endophytic fungal extracts and its significance of antimicrobial and antioxidant properties.

Species Profiles and Antimicrobial Resistance of Non-aureus Staphylococci Isolated from Healthy Broilers, Farm Environments, and Farm Workers

  • Ji Heon Park;Gi Yong Lee;Ji Hyun Lim;Geun-Bae Kim;Kun Taek Park;Soo-Jin Yang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.792-804
    • /
    • 2023
  • Non-aureus staphylococci (NAS), particularly antimicrobial-resistant NAS, have a substantial impact on human and animal health. In the current study, we investigated (1) the species profiles of NAS isolates collected from healthy broilers, farm environments, and farm workers in Korea, (2) the occurrence of antimicrobial-resistant NAS isolates, especially methicillin resistance, and (3) the genetic factors involved in the methicillin and fluoroquinolone resistance. In total, 216 NAS isolates of 16 different species were collected from healthy broilers (n=178), broiler farm environments (n=18), and farm workers (n=20) of 20 different broiler farms. The two most dominant broiler-associated NAS species were Staphylococcus agnetis (23.6%) and Staphylococcus xylosus (22.9%). Six NAS isolates were mecA-positive carrying staphylococcal cassette chromosome mec (SCCmec) II (n=1), SCCmec IV (n=1), SCCmec V (n=2), or nontypeable SCCmec element (n=2). While two mecA-positive Staphylococcus epidermidis isolates from farm workers had SCCmec II and IV, a mecA-positive S. epidermidis isolate from broiler and a Staphylococcus haemolyticus isolate farm environment carried SCCmec V. The occurrence of multidrug resistance was observed in 48.1% (104/216 isolates) of NAS isolates with high resistance rates to β-lactams (>40%) and fusidic acid (59.7%). Fluoroquinolone resistance was confirmed in 59 NAS isolates (27.3%), and diverse mutations in the quinolone resistance determining regions of gyrA, gyrB, parC, and parE were identified. These findings suggest that NAS in broiler farms may have a potential role in the acquisition, amplification, and transmission of antimicrobial resistance.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • 한국축산식품학회지
    • /
    • 제41권6호
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Antifungal Synergy of Theaflavin and Epicatechin Combinations Against Candida albicans

  • Betts, Jonathan W.;Wareham, David W.;Haswell, Stephen J.;Kelly, Stephen M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1322-1326
    • /
    • 2013
  • New antifungal agents are required to compensate for the increase in resistance to standard antifungal agents of Candida albicans, which is an important opportunistic fungal pathogen that causes minor infections in many individuals but very serious infections in those who are immune-compromised. In this study, combinations of theaflavin and epicatechin are investigated as potential antifungal agents and also to establish whether antifungal synergy exists between these two readily accessible and cost-effective polyphenols isolated from black and green tea. The results of disc diffusion assays showed stronger antibacterial activity of theaflavin:epicatechin combinations against C. albicans NCTC 3255 and NCTC 3179, than that of theaflavin alone. Minimum inhibitory concentrations (MICs) of 1,024 ${\mu}g/ml$ with theaflavin and 128-256 ${\mu}g/ml$ with theaflavin:epicatechin combinations were found. The fractional inhibitory concentration indexes were calculated, and the synergy between theaflavin and epicatechin against both isolates of C. albicans was confirmed. Theaflavin:epicatechin combinations show real potential for future use as a treatment for infections caused by C. albicans.

Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus

  • Prakasham, Reddy Shetty;Kumar, Buddana Sudheer;Kumar, Yannam Sudheer;Shankar, Guntuku Girija
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.614-621
    • /
    • 2012
  • Silver nanoparticles production by the green chemistry approach was investigated using an isolated marine actinomycetes strain. The isolated strain was identified as Streptomyces albidoflavus based on chemotaxonomic and ribotyping properties. The strain revealed production of silver nanoparticles both extracellular and intracellularly. Surface Plasmon Resonance analysis with the function of time revealed that particle synthesis by this strain is reaction time dependent. The produced particles were spherical shaped and monodispersive in nature and showed a single surface plasmon resonance peak at 410 nm. Size distribution histograms indicated production of 10-40-nm-size nanoparticles with a mean size of 14.5 nm. FT-IR spectra of nanopartilces showed N-H, C-H, and C-N stretching vibrations, denoting the presence of amino acid/peptide compounds on the surface of silver nanoparticles produced by S. albidoflavus. Synthesized nanoparticles revealed a mean negative zeta potential and electrophoretic mobility of -8.5 mV and -0.000066 $cm^2/Vs$, respectively. The nanoparticles produced were proteinaceous compounds as capping agents with -8.5 mV zeta potential and revealed antimicrobial activity against both Gram-negative and -positive bacterial strains. Owing to their small size, these particles have greater impact on industrial application spectra.

Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation

  • Supraja, N.;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.373-392
    • /
    • 2017
  • Silver nanoparticles (AgNPs) were successfully synthesized through a simple green route using the Nelumbo nucifera leaf, stem and flower extracts. These nanoparticles showed characteristic UV-Vis absorption peaks between 410-450 nm which arises due to the plasmon resonance of silver nanoparticles. The Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of amides and which acted as the stabilizing agent. X-ray diffraction spectrum of the nanoparticles confirmed the Face centered cubic (FCC) structure of the formed AgNPs. Dynamic light scattering technique was used to measure hydrodynamic diameter (68.6 nm to 88.1 nm) and zeta potential (-55.4 mV, -57.9 mV and 98.9 mV) of prepared AgNPs. The scanning electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodispersed silver nanoparticles (1-100 nm). The antimicrobial activity of prepared AgNPs was evaluated against fungi, Gram-positive and Gram-negative bacteria using disc diffusion method. Anti-corrosion studies were carried out using coupon method (mild steel and iron) and dye degradation studies were carried out by assessing photo-catalytic activity of Nelumbo nucifera extracts mediated AgNPs.

Ambient Air Waste Sorting Facilities Could Be a Source of Antibiotic Resistant Bacteria

  • Calheiros, Ana;Santos, Joana;Ramos, Carla;Vasconcelos, Marta;Fernandes, Paulo
    • 한국미생물·생명공학회지
    • /
    • 제49권3호
    • /
    • pp.367-373
    • /
    • 2021
  • The antimicrobial resistance of Staphylococcus spp. and Gram negative strains present in air samples from waste sorting facilities was assessed. Phenotypic studies have revealed a high percentage of strains of Staphylococcus spp. resistant to methicillin. Genotypically and by RT-PCR, it was found that the mecA gene usually associated with methicillin resistance was present in 8% of the Staphylococcus strains isolated. About 30% of the Gram negative strains from the same samples also displayed resistance to meropenem and 79% of these were resistant to multiple antibiotics from different classes, namely cephalosporins and β-lactams. The results suggest that in professional activities with high levels of exposure to biological agents, the quantification and identification of the microbial flora in the work environment, with the determination of the presence of potential agents displaying multi-resistances is of relevance to the risk assessment. The personal protection of workers is particularly important relevance in these cases, since many of the strains that exhibit multi-resistance are potential opportunistic agents.

Anthocyanins from Clitoria ternatea Attenuate Food-Borne Penicillium expansum and its Potential Application as Food Biopreservative

  • Leong, Chean-Ring;Azizi, Muhammad Afif Kamarul;Taher, Md Abu;Wahidin, Suzana;Lee, Kok-Chang;Tan, Wen-Nee;Tong, Woei-Yenn
    • Natural Product Sciences
    • /
    • 제23권2호
    • /
    • pp.125-131
    • /
    • 2017
  • Clitoria ternatea or Commonly known blue pea, is a perennial climber crop native to Asian countries. The current study was aimed to evaluate the antimicrobial activity C. ternatea extract on food borne microorganisms and its antifungal effect on Penicillium expansum. The extract showed significant antimicrobial activity against 3 Gram positive bacteria, 2 Gram negative bacteria and 1 filamentous fungus on disc diffusion assay. The extract also showed good biocidal effect on all Gram positive bacteria tested and P. expansum. However, the kill curve analysis revealed that the fungicidal activity of the extract against P. expansum conidia was depend on the concentration of the extract and the time of exposure of the conidia to the extract. The scanning electron micrograph of the extract treated P. expansum culture showed alterations in the morphology of fungal hyphae. The germination of P. expansum conidia was completely inhibited and conidial development was totally suppressed by the extract, suggesting the possible mode of action of anthocyanin. Besides, the extract also exhibited 5.0-log suppression of microbial growth relative to control in the rice model. The results indicate the potential use of the C. ternatea anthocyanin as food biopreservative.