DOI QR코드

DOI QR Code

Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation

  • Supraja, N. (Nanotechnology laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University) ;
  • Avinash, B. (Department of Veterinary Parasitology, College of Veterinary Sciences, Sri Venkateswara Veterinary University) ;
  • Prasad, T.N.V.K.V. (Nanotechnology laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University)
  • Received : 2017.02.22
  • Accepted : 2017.07.20
  • Published : 2017.12.25

Abstract

Silver nanoparticles (AgNPs) were successfully synthesized through a simple green route using the Nelumbo nucifera leaf, stem and flower extracts. These nanoparticles showed characteristic UV-Vis absorption peaks between 410-450 nm which arises due to the plasmon resonance of silver nanoparticles. The Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of amides and which acted as the stabilizing agent. X-ray diffraction spectrum of the nanoparticles confirmed the Face centered cubic (FCC) structure of the formed AgNPs. Dynamic light scattering technique was used to measure hydrodynamic diameter (68.6 nm to 88.1 nm) and zeta potential (-55.4 mV, -57.9 mV and 98.9 mV) of prepared AgNPs. The scanning electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodispersed silver nanoparticles (1-100 nm). The antimicrobial activity of prepared AgNPs was evaluated against fungi, Gram-positive and Gram-negative bacteria using disc diffusion method. Anti-corrosion studies were carried out using coupon method (mild steel and iron) and dye degradation studies were carried out by assessing photo-catalytic activity of Nelumbo nucifera extracts mediated AgNPs.

Keywords

References

  1. Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A. and Abdel-Wahhab, M.A. (2014), "Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract", J. Saudi Chem. Soc., 18(4), 356-363. https://doi.org/10.1016/j.jscs.2013.09.011
  2. Alarcon, E.I., Udekwu, K., Skog, M., Pacioni, N.L., Stamplecoskie, K.G., Gonzalez-Bejar, M., Polisetti, N., Wickham, A., Richter-Dahlfors, A., Griffith, M. and Scaiano, J.C. (2012), "The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles", Biomater., 33(19), 4947-4956. https://doi.org/10.1016/j.biomaterials.2012.03.033
  3. Aneja, K.R. (2003), Experiments in Microbiology Plant Pathology Tissue Culture and Mushroom Production Technology, (3rd Edition), New Age International Publisher, India.
  4. Bo, L., Yang, W., Chen, M., Gao, J. and Xue, Q. (2009), "A simple and 'green' synthesis of polymer-based silver colloids and their antibacterial properties", Chem. Biodivers., 6(1), 111-116. https://doi.org/10.1002/cbdv.200800112
  5. Brindha, D. and Arthi, D. (2010), "Antiplatelet activity of white and pink Nelumbo nucifera Gaertn flowers", Brazil. J. Pharm. Sci., 46(3), 579-583. https://doi.org/10.1590/S1984-82502010000300023
  6. Duke, J.A., Bogenschutz-Godwin, M.J., du Cellier, J. and Duke, A.K. (2002), Handbook of Medicinal Herbs.
  7. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D. and Baffa, O. (2011), "Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis", Acta Part A, 82(1), 140-145. https://doi.org/10.1016/j.saa.2011.07.024
  8. Hirsch, T., Zharnikov, M., Shaporenko, A., Stahl, J., Weiss, D. and Wolfbeis, O.S. (2005), "Size controlled electrochemical synthesis of metal nanoparticles on monomolecular templates", Angew. Chem. Int. Ed., 44(41), 6775-6778. https://doi.org/10.1002/anie.200500912
  9. Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S.A. and Michailidis, N. (2012), "Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract", Mater. Lett., 76, 18-20. https://doi.org/10.1016/j.matlet.2012.02.025
  10. Maruthamuthu, S., Nagendran1, T., Anandkumar, B., Karthikeyan, M.S., Palaniswamy, N. and Narayanan, G. (2011), "Microbiologically influenced corrosion on rails current science", 100(6), 870-880.
  11. Mukherjee, P.K., Mukherjee, D., Maji, A.K., Rai, S. and Heinrich, M. (2009), "The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile", J. Pharm. Pharmacol., 61(4), 407-422. https://doi.org/10.1211/jpp.61.04.0001
  12. Padil, V.V.T. and Cernik, M. (2013), "Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application", Int. J. Nanomed., 8, 889-898.
  13. Panacek, A.L., Kivtek, L., Prucek, R., Milan, K., Vecerovam R, and Pizurova, N. (2006), "Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity", J. Phys. Chem. B, 110(33), 16248-16253. https://doi.org/10.1021/jp063826h
  14. Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V., Hamal, P., Zboril, R. and Kvitek, L. (2009), "Antifungal activity of silver nanoparticles against Candida spp.", Biomaterials, 30(31), 6333-6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
  15. Prabha, S., Supraja, N., Garud, M. and Prasad, T.N.V.K.V. (2014), "Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles", J. Nanostruct. Chem., 4(4), 161-170. DOI: 10.1007/s40097-014-0132-z
  16. Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R. and Srinivasan, P. (2013), "Biologically synthesized green silver nanoparticles from leaf extract of Vitexnegundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15 Process", Biochemistry, 48(2), 317-324.
  17. Prasad, T.N.V.K.V., Kambala, V.S.R. and Naidu, R. (2011), "A critical review on biogenic silver nanoparticles and their antimicrobial activity", Curr. Nanosci., 7(4), 531-544. https://doi.org/10.2174/157341311796196736
  18. Prucek, R., Tucek, J., Kilianova, M., Panacek, A., Kvitek, L., Filip, J., Kolar, M., Tomankova, K. and Zboril, R. (2011), "The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles", Biomaterials, 32(21), 4704-4713. https://doi.org/10.1016/j.biomaterials.2011.03.039
  19. Rastogi, L. and Arunachalam, J. (2011), "Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential", Mater. Chem. Phys., 129(1), 558-563. https://doi.org/10.1016/j.matchemphys.2011.04.068
  20. Salem, W.M., Haridy, M., Sayed, W.F. and Hassan, N.H. (2014), "Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus", Ind. Crops. Prod., 62, 228-234. https://doi.org/10.1016/j.indcrop.2014.08.030
  21. Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G. an Sundaramanickam, A. (2014), "Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens", Appl. Nanosci., 4(7), 881-888. DOI: 10.1007/s13204-013-0271-4
  22. Shen, M.J., Schopf, J.W., Harbottle, G., Cao, R.J., Ouyang, S., Zhou, K.S., Southon, J.R. and Liu, G.H. (2002), "Long-living lotus: Germination and soil-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring", Am. J. Botany, 89(2), 236-247. https://doi.org/10.3732/ajb.89.2.236
  23. Shen-Miller, J., Mudgett, M.B., Schopf, J.W., Clarke, S. and Berger, R. (1995), "Exceptional seed longevity and robust growth: Ancient sacred lotus from China", Am. J. Botany, 82(11), 1367-1380. https://doi.org/10.2307/2445863
  24. Sivakumar, P., NethraDevi, C. and Renganathan, S. (2012), "Synthesis of silver nano particles using Lantana camara fruit extract and its effect on pathogens", Asian J. Pharm. Clin. Res., 5(3), 97-101.
  25. Sreekanth, T.V.M., Nagajyothi, P.C., Supraja, N. and Prasad, T.N.V.K.V. (2014), "Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles", Appl. Nanosci., 5(5), 595-602. DOI: 10.1007/s13204-014-0354-x
  26. Sri Sindhura, K., Prasad, T.N.V.K.V., Panner Selvam, P. and Hussain, O.M. (2013), "Synthesis and characterization of phytogenic zinc nanoparticles and their antimicrobial activity", Appl. Nanosci., 4(7), 819-827. DOI: 10.1007/s13204-013-0263-4
  27. Sulaiman, G.M., Mohammed, W.H., Marzoog, T.R., Al-Amiery, A.A.A., Kadhum, A.A.H. and Mohamad, A.B. (2013), "Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract", Asian Pac. J. Trop. Biomed., 3(1), 58-63. https://doi.org/10.1016/S2221-1691(13)60024-6
  28. Supraja, N., Prasad, T.N.V.K.V., Giridhara Krishna, T. and David, E. (2016), "Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles", Appl. Nanosci., 6(4), 581-590. DOI: 10.1007/s13204-015-0472-0
  29. Tomsic, B., Simoncic, B., Orel, B., Cerne, L., Tavcer, P., Zorko, M. and Jerman, A. (2008), "Sol-gel coating of cellulose fibers with antimicrobial and repellent properties", Sol-Gel Sci. Technol., 47(1), 44-57. https://doi.org/10.1007/s10971-008-1732-1
  30. Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., Gnanajobitha, G., Malarkodi. C., Sivakavinesan, M. and Annadurai, G. (2014), "Degradation of methylene blue using biologically synthesized silver nanoparticles", Bioinorg. Chem. Appl., 2014, Article ID 742346.
  31. Vijayakumar, R., Devi, V., Adavallan, K. and Saranya, D. (2011), "Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus", Phys. E, 44(3), 665-671. https://doi.org/10.1016/j.physe.2011.11.002
  32. Yilmaz, M., Turkdemir, H., Akif Kilic, M., Bayram, E., Cicek, A., Mete, A. and Ulug, B. (2011), "Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana", Mater. Chem. Phys., 130(3), 1195-1202. https://doi.org/10.1016/j.matchemphys.2011.08.068
  33. Yoon, C.K. (1996), Heat of Lotus Attracts Insects and Scientists, New York Times.
  34. Yoon, J.S., Kim, H.M., Yadunandam, A.K., Kim, N.H., Jung, H.A., Choi, J.S., Kim, C.Y. and Kim, G.D. (2013), "Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response", Phytomed., 20(11), 1013-1022. https://doi.org/10.1016/j.phymed.2013.03.024
  35. Zhong, G., Chen, Z.D. and We, Y.M. (2007), "Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (Pueraria hirsute Matsum.) starches", Int. J. Food Sci. Technol., 42(12), 1449-1455. https://doi.org/10.1111/j.1365-2621.2006.01363.x

Cited by

  1. Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.211