Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07013

Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus  

Prakasham, Reddy Shetty (Bioengineering and Environmental Centre, Indian Institute of Chemical Technology)
Kumar, Buddana Sudheer (Bioengineering and Environmental Centre, Indian Institute of Chemical Technology)
Kumar, Yannam Sudheer (Bioengineering and Environmental Centre, Indian Institute of Chemical Technology)
Shankar, Guntuku Girija (University College of Pharmaceutical Sciences, Andhra University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 614-621 More about this Journal
Abstract
Silver nanoparticles production by the green chemistry approach was investigated using an isolated marine actinomycetes strain. The isolated strain was identified as Streptomyces albidoflavus based on chemotaxonomic and ribotyping properties. The strain revealed production of silver nanoparticles both extracellular and intracellularly. Surface Plasmon Resonance analysis with the function of time revealed that particle synthesis by this strain is reaction time dependent. The produced particles were spherical shaped and monodispersive in nature and showed a single surface plasmon resonance peak at 410 nm. Size distribution histograms indicated production of 10-40-nm-size nanoparticles with a mean size of 14.5 nm. FT-IR spectra of nanopartilces showed N-H, C-H, and C-N stretching vibrations, denoting the presence of amino acid/peptide compounds on the surface of silver nanoparticles produced by S. albidoflavus. Synthesized nanoparticles revealed a mean negative zeta potential and electrophoretic mobility of -8.5 mV and -0.000066 $cm^2/Vs$, respectively. The nanoparticles produced were proteinaceous compounds as capping agents with -8.5 mV zeta potential and revealed antimicrobial activity against both Gram-negative and -positive bacterial strains. Owing to their small size, these particles have greater impact on industrial application spectra.
Keywords
Streptomyces albidoflavus; silver nanoparticle; transmission electron microsopy; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dickson, D. P. E. 1999. Nanostructured magnetism in living systems. J. Magn. Mater. 203: 46-49.   DOI   ScienceOn
2 Feng, Q. L., U. Wa, G. Q. Chen, K. Z. Cui, T. M. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Biomed. Mater. Res. 52: 662-668.   DOI   ScienceOn
3 Hemanth Naveen, K. S., Gaurav Kumar, L. Karthik, and K. V. Bhaskara Rao. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2: 161-167.
4 Hong, B., J. Kai, Y. Ren, J. Han, J. Zou, C. H. Ahn, and K. A. Kang. 2008. Highly sensitive, rapid, reliable and automatic, cardiovascular disease diagnosis with Nanoparticle Fluorescence enhancer and mems. Adv. Exp. Med. Biol. 614: 265-273.
5 Kalimuthu, K., R. Suresh Babu, D. Venkataraman, B. Mohd, and S. Gurunathan. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B 65: 150-153.   DOI   ScienceOn
6 Kasthuri, J., S. Veerapandian, and N. Rajendiran. 2009. Biological and synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B 68: 55-60.   DOI   ScienceOn
7 Khosravi-Darani, K. 2010. Research activities on supercritical fluid science in biotechnology. Crit. Rev. Food Sci. Nutr. 50: 479-488.   DOI   ScienceOn
8 Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, and H. J. Lee. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 95-101.   DOI   ScienceOn
9 Klaus, T., R. Joerger, E. Olsson, and C. G. Granquist. 1999. Silver based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96: 13611-13614.   DOI   ScienceOn
10 Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720.   DOI   ScienceOn
11 Pum, D. and U. B. Sleytr. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8-12.   DOI   ScienceOn
12 Sadowski, Z., I. Maliszewska, I. Polowczyk, T. Kozlecki, and B. Grochowalska. 2008. Biosynthesis of colloidal silver particles using microorganisms. Polish J. Chem. 82: 377-382.
13 Saifuddin, N., W. C. Wang, and A. A. Nur Yasumira. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E J. Chem. 6: 61-70.   DOI
14 Sanghi, R. and P. Verma. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores. Technol. 100: 501-504.   DOI   ScienceOn
15 Sastry, M., A. Ahmad, I. M. Khan, and R. Kumar. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162-170.
16 Shaligram, S. N., M. Bule, R. Bhambure, S. R. Singhal, K. S. Singh, G. Szakacs, and A. Pandey. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungi. Process Biochem. 44: 939-943.   DOI   ScienceOn
17 Shirley, A. Dayanad, B. Sreedhar, and S. G. Dastager. 2010. Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig. J. Nanomater. Biostruc. 5: 447-451.
18 Sosa, I. O., C. Noguez, and R. G. Barrera. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. 107: 6269-6275.
19 Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 28: 313-318.   DOI   ScienceOn
20 Absar, A., S. Satyajyoti, M. I. Khan, K. Rajiv, and M. Sastry. 2005. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1: 47-53.   DOI   ScienceOn
21 Balaji, D. S., S. Basavaraja, R. Deshpande, D. B. Mahesh, B. K. Prabhakar, and A. Venkataraman. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B 68: 88-92.   DOI   ScienceOn
22 Brause, R., H. Moeltgen, and K. Kleinermanns. 2002. Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/Vis spectroscopy and STM/SEM microscopy. Appl. Phys. 75: 711-716.   DOI
23 Chau, C. F., S. H. Wu, and G. C. Yen. 2007. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18: 269-280.   DOI   ScienceOn
24 Cummins, C. S. and H. Harris. 1958. Studies on the cell wall composition and taxonomy of Actinomycetales and related groups. J. Gen. Microbiol. 18: 173-189.   DOI   ScienceOn
25 Milligan, J. and F. M. M. Morel. 2002. A proton buffering role for silica in diatoms. Science 297: 1848-1850.   DOI   ScienceOn
26 Lengke, F. M., E. M. Fleet, and G. Southam. 2007. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23: 2694-2699.   DOI   ScienceOn
27 Martinez-Castanon, G. A., N. Nino-Martinez, F. Martinez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz. 2008. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 10: 1343-1348.   DOI   ScienceOn
28 Mie, G. 1908. Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 25: 377-445.
29 Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, et al. 2001. Bioreduction of $AuCI_4$ - ions by the fungus, Verticillium sp., and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 1: 3585-3588.
30 Nair, B. and T. Pradeep. 2002. Coalescence of nanoclusters and formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst. Growth Design 2: 295-298.
31 Narayanan, K. B. and N. Sakthivel. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156: 1-13.   DOI   ScienceOn
32 Natarajan, K., S. Selvaraj, and V. Ramachandra Murthy. 2010. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct. 5: 135-140.
33 Krumov, N., I. Perner-Nochta, S. Oder, V. Gotcheva, A. Angelov, and C. Posten. 2009. Production of inorganic nanoparticles by microorganisms. Chem. Eng. Technol. 32: 1026-1035.   DOI   ScienceOn
34 Yamanaka, M., K. Hara, and J. Kudo. 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71: 7589-7593.   DOI   ScienceOn
35 Srinivasulu, B., R. S. Prakasham, A. Jetty, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598.   DOI   ScienceOn
36 Vigneshwaran, N., N. Arati Kathe, P. V. Varadarajan, P. Rajan Nachane, and R. H. Balasubramanya. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Interfaces 53: 55-59.   DOI   ScienceOn
37 Wang, P. 2006. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17: 574-579.   DOI   ScienceOn
38 Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad. 2008. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 83: 761-769.   DOI   ScienceOn