• 제목/요약/키워드: antimicrobial membrane

검색결과 194건 처리시간 0.027초

해양 생물 유래의 항균 펩타이드 및 작용 기작 (Antimicrobial Peptides Derived from the Marine Organism(s) and Its Mode of Action)

  • 황보미;이준영;이동건
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.19-23
    • /
    • 2010
  • Recently, marine organisms are emerging as a leading group for identifying and extracting novel bioactive substances. These substances are known to possess a potential regarding not only as a source of pharmaceutical products but also their beneficial effects on humans. Among the substances, antimicrobial peptides (AMPs) specifically have attracted considerable interest for possible use in the development of new antibiotics. AMPs are characterized by relatively short cationic peptides containing the ability to adopt a structure in which cationic or hydrophobic amino acids are spatially scattered. Although a few reports address novel marine organisms-derived AMPs, their antimicrobial mechanism(s) are still remain unknown. In this review, we summarized the peptides previously investigated, such as Pleurocidin, Urechistachykinins, Piscidins and Arenicin-1. These peptides exhibited significant antimicrobial activities against human microbial pathogens without remarkable hemolytic effects against human erythrocytes, and their mode of actions are based on permeabilization of the plasma membrane of the pathogen. Therefore, the study of antimicrobial peptides derived from marine organisms may prove to be useful in the design of future therapeutic antimicrobial drugs.

Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.381-390
    • /
    • 2018
  • We have previously derived a novel antimicrobial peptide, LPcin-YK3(YK3), based on lactophoricin and have successfully studied and reported on the relationship between its structure and function. In this study, antimicrobial peptides with improved antimicrobial activity, less cytotoxicity, and shorter length were devised and characterized on the basis of YK3, and named YK5, YK8, and YK11. The peptide design was based on a variety of knowledge, and a total of nine analog peptides consisted of one to three amino acid substitutions and C-terminal deletions. In detail, tryptophan substitution improved the membrane perturbation, lysine substitution increased the net charge, and excessive amphipathicity decreased. The analog peptides were examined for structural characteristics through spectroscopic analytical techniques, and antimicrobial susceptibility tests were used to confirm their activity and safety. We expect that these studies will provide a platform for systematic engineering of new antibiotic peptides and generate libraries of various antibiotic peptides.

Casein 효소 가수분해물의 항균 활성과 그 응용 (Application and Antimicrobial Activities of Casein Hydrolysates Treated with Asp.oryzae Protease)

  • 이혜진;이상덕;오만진
    • 한국식품저장유통학회지
    • /
    • 제13권1호
    • /
    • pp.88-94
    • /
    • 2006
  • 단백 효소 가수분해물의 천연 항균제로서의 응용성을 검토하기 위하여 casein에 5종의 단백질 가수분해 효소를 작용시켜 얻어진 가수 분해물의 항균활성을 측정하고 활성이 가장 높은 가수분해물을 부분 정제하여 그 응용성을 검토하였다. Casein에 5종 단백질 분해효소를 작용시켜 얻은 가수분해물의 항균활성은 Aspergillus oryzae protease에 의한 것이 가장 높았다. 효소처리에 의하여 얻어진 가수분해 물을 30,000, 10,000, 3,000 membrane filter로 한외여과 하였을 때 항균활성은 3,000이하 분획물에 대부분 함유되어 있었으며 공시균주에 대한 최소저해농도는 $1.0\~1.5\;mg/mL$이었다. Aspergillus oryzae pretense로 작용시킨 casein 가수분해물은 $121^{\circ}C$에서 10분간 가열했을 때도 그 항균 활성을 유지하는 것으로 보아 열에 안정하였다. 가수분해물을 HPLC로 220 nm 280 nm에서 검출된 peak 별로 수집하여 항균활성을 측정 한 결과 retention time 12.6, 13.2 분에서 분취된 peptide가 활성이 있었다. 가수분해 동결건조물을 된장에 첨가하였을 때 미생물의 생육이 저해되었으며 실용성이 있었다.

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

수용성 절삭유의 부패 특성과 Copper Alloy Metal Fiber의 부패 방지 장치에 관한 연구 (A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids)

  • 송주영;이상호;김종화
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.69-73
    • /
    • 2009
  • Copper alloy metal fiber was incorporated into the conventional water-soluble metal working fluids to increase the antimicrobial activity. Fluid treated by copper alloy metal fiber is shown that bacteria is disappeared whereas that untreated metal fiber is increased bacteria as increasing the life time. When the electrochemical potential of Cu/Zn ion is -268mV, radicals with molecular oxygen are easily made. Especially, hydroperoxide radical shows strong toxicity to the strains, leading to the conformational change of plasma membrane. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

Antimicrobial activity of sophorolipid biosurfactant

  • 유달수;김갑정;김영범;김은기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.294-297
    • /
    • 2001
  • Sophorolipid, a biosurfactant produced from Candida bombicola ATCC 22214. showed antimicrobial activity against Bacillus subtilis. Staphylococcus xylosus, Streptococcus mutans, and Propionibacterium acne at 4, 1, 1, 0.5 ppm as MIC(minimum inhibitory concentration). Also 100ppm of sophorolipid inhibited 50% of cell growth of plant pathogenic fungus. Botrytis cinerea. However, sophorolipid showed no effect on the Escherichia coli, indicating its selective antimicrobial activity depending on the cell wall structure. Treatment of B. subtilis with sophorolipid increased the leakage of intracellular enzyme, malate dehydrogenase, indicating the possible interaction of sophorolipid with cellular membrane. Between lactone-type and acid-type sophorolipid, the former showed higher antimicrobial activity.

  • PDF

Characteristics of Sophorolipid as an Antimicrobial Agent

  • KIM, KAPJUNG;DALSOO YOO;YOUNGBUM KIM;BAEKSEOK LEE;DOONHOON SHIN;EUN-KI KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.235-241
    • /
    • 2002
  • Sophorolipid, a biosurfactant produced from Candida bombicola ATCC 22214, showed antimicrobial activity against Bacillus subtilis, Staphylococcus xylosus, Streptococcus mutans, and Propionibacterium acne at 4, 1, 1, 0.5 ppm, respectively. Also, 100 ppm of sophorolipid inhibited $50\%$ of cell growth of plant pathogenic fungus, Botrytis cineria. However, sophorolipid showed no effect on Escherichia coli, indicating that its selective antimicrobial activity depended on the cell wall structure. Treatment of B. subtilis with sophorolipid increased leakage of intracellular enzyme, malate dehydrogenase, indicating a possible interaction of sophorolipid with a cellular membrane. Comparing lactone-type and acid-type sophorolipids, the former showed a higher antimicrobial activity. Supplementing other surfactants showed no significant effects on the antimicrobial activity. Animal study showed that 5 g of sophorolipid per kg body weight by oral administration caused no toxicity, and sophorolipid induced no irritation on the skin. These results show potential use of sophorolipid as an active ingredient in healthcare products.

Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer

  • Lorello, Kim M.;Kreutzberger, Alex J.;King, Allison M.;Lee, Hee-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.783-792
    • /
    • 2014
  • The binding interaction between a hemolytic peptide ${\delta}$-lysin and a zwitterionic lipid bilayer POPC was investigated through a series of molecular dynamics (MD) simulations. ${\delta}$-Lysin is a 26-residue, amphipathic, ${\alpha}$-helical peptide toxin secreted by Staphylococcus aureus. Unlike typical antimicrobial peptides, ${\delta}$-lysin has no net charge and it is often found in aggregated forms in solution even at low concentration. Our study showed that only the monomer, not dimer, inserts into the bilayer interior. The monomer is preferentially attracted toward the membrane with its hydrophilic side facing the bilayer surface. However, peptide insertion requires the opposite orientation where the hydrophobic side of peptide points toward the membrane interior. Such orientation allows the charged residues, Lys and Asp, to have stable salt bridges with the lipid head-group while the hydrophobic residues are buried deeper in the hydrophobic lipid interior. Our simulations suggest that breaking these salt bridges is the key step for the monomer to be fully inserted into the center of lipid bilayer and, possibly, to translocate across the membrane.

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.