• Title/Summary/Keyword: antilisterial

Search Result 21, Processing Time 0.026 seconds

Antilisterial Bacteriocin from Lactobacillus rhamnosus CJNU 0519 Presenting a Narrow Antimicrobial Spectrum

  • Jeong, Ye-Jin;Moon, Gi-Seong
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.137-142
    • /
    • 2015
  • A lactic acid bacterium presenting antimicrobial activity against a Lactobacillus acidophilus strain used for eradication of acid inhibition was isolated from a natural cheese. The 16S rRNA gene sequence of the isolate best matched with a strain of L. rhamnosus and was designated L. rhamnosus CJNU 0519. The antimicrobial activity of the partially purified bacteriocin of CJNU 0519 was abolished when treated with a protease, indicating the protein nature of the bacteriocin. The partially purified bacteriocin (rhamnocin 519) displayed a narrow antimicrobial activity against L. acidophilus, Listeria monocytogenes, and Staphylococcus aureus among several tested bacterial and yeast strains. Rhamnocin 519 in particular showed strong bactericidal action against L. monocytogenes.

Growth Survival of Listeria monocytogenes in Enoki Mushroom (Flammulina velutipes) at Different Temperatures and Antilisterial Effect of Organic Acids (팽이버섯에서 Listeria monocytogenes의 온도별 생존과 유기산에 의한 저감화)

  • Kim, Se-Ri;Kim, Won-Il;Yoon, Jae-Hyun;Jeong, Do-Yong;Choi, Song-Yi;Hwang, Injun;Rajalingam, Nagendran
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.630-636
    • /
    • 2020
  • Listeria monocytogenes (L. monocytogenes) was responsible for several recall cases owing to its incidence in mushrooms exported from the Republic of Korea. In this study, we investigated the survival of L. monocytogenes in enoki mushroom (Flammulina velutipes) at different temperatures and the antilisterial effect of its organic acids. Enoki mushrooms were innoculated with L. monocytogenes (initial concentration 4.5 log CFU/g) and stored at 1-35℃, No growth of L. monocytogenes in enoki mushrooms was observed at 1℃ for 30 days. 3.0 log CFU/g growth of L. monocytogenes was also achieved after 36 h and 24 h at 30℃ and 35℃, respectively. To evaluate the antilisterial effect of the organic acids (acetic acid, lactic acid, malic acid), enoki mushrooms were treated with 1-3% of each acid for 10-30 min. The efficacy of malic acid and lactic acid was significantly higher than that of acetic acid. Over 3.0 log reductions were observed when L. monocytogenes in enoki mushrooms was immersed in 3% lactic acid and malic acid over 10 minutes or more. Therefore, it is necessary to keep enoki mushrooms at 1℃ during the export process and treat them with 3% lactic acid and malic acid for 10 min prior to consumption.

Antilisterial Activity of Bacteriocin Produced by Enterococcus faecium MJ5-14 (Enterococcus faecium MJ5-14가 생산한 박테리오신의 항리스테리아 활성)

  • Lim, Sung-Mee;Lee, Jong-Gab;Park, Mi-Yeon;Chang, Dong-Suck
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.151-160
    • /
    • 2004
  • Enterococcus faecium MJ5-14 isolated from Meju produced a bacteriocin, which was antagonistic towards Listeria monocytogenes. Bacteriocin activity reached a maximum (640 BU/mL) after incubation for 12 hr, the early stationary phase, then dropped after the late stationary phase. Bacterocin of E. faecium MJ5-14 was extremely active against a wide range of Listeria species, including L. monocytogenes with sensitives up to about 640 BU/mL. In case of mixed culture with 105 CFU/mL L. monocytogenes and 105 CFU/mL E. faecium MJ5-14, the inhibitory effect against L. monocytogenes at $37^{\circ}C$ was higher than at $25^{\circ}C$. The mode of action was identified as bactericidal, because the addition of 100 BU/mL this bacteriocin to cell suspensions of L. monocytogenes KCTC 3569, led to a marked decrease in the number of viable cells. Further, when held in contact with bacteriocin of E. faecium MJ15-14 for 12 hr, L. monocytogenes KCTC 3569 displayed the disruption of the cells and an important efflux of the intracellular material.

Molecular Characterization of Some Antilisterial Bacteriocin Genes from Enterococcus faecium and Pediococcus pentosaceus

  • El-Arabi, Nagwa I.;Salim, Rasha G.;Abosereh, Nivien A.;Abdelhadi, Abdelhadi A.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.288-299
    • /
    • 2018
  • Food bio preservation is of major interest in the food industry. Many types of antimicrobial compounds can be produced by lactic acid bacteria (LAB), including bacteriocins. Bacteriocins increase the shelf-life of food by decreasing some food-borne diseases. In this study, a multi-coding sequence of bacteriocin genes was used for primer design to produce bacteriocin genes in Enterococcus faecium AH2 strain and Pediococcus pentosaceus AH1. Multi-coding sequences were aligned to detect conserved sequences in the bacteriocin gene. Eight genes encoding proteins involved in bacteriocin production were isolated and sequenced, including six from E. faecium AH2 (entA, entI, entF, entR, orfA2, orfA3) and two from P. pentoceseus AH1 (papA, pedB), and all gene sequences were deposited in the Gen Bank database under accession numbers LC064146-LC064151, LC101300, and LC101789, respectively. P. pentosaceus AH1 and E. faecium AH2 strains displayed bacteriocin activities of $2610AU\;mL^{-1}$ and $690AU\;mL^{-1}$ and inhibition zones of 26 mm and 19 mm, respectively. Overexpression of entA in E. faecium AH2 increased the bacteriocin and antimicrobial activities.

Characterization of Bacteriocin Produced by Enterococcus faecium MJ-14 Isolated from Meju

  • Lim, Sung-Mee;Park, Mi-Yeon;Chang, Dong-Suck
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • Enterococcus faecium MJ-14, having strong antilisterial activity, was isolated from Korean fermented food, Meju. MJ-14 showed the same phenotypic characteristics, but different sugar utilization, as reference strain, E. faecium KCCM12118. It could utilize D-xylose, amygdaline, and gluconate, whereas E. faecium KCCM12118 could not. Optimal condition for bacteriocin production by E. faecium MJ-14 was at $37^{\circ}C$ and pH 7.0. Bacteriocin activity appeared in mid exponential phase and increased rapidly up to stationary phase. Activity was significantly promoted in MRS broth containing 3.0% glucose, 1.5% lactose, 2.0% peptone, or 1.5% tryptone. Bacteriocins effectively inhibited Enterococcus faecalis and Listeria spp. of Gram-positive bacteria, and Helicobacter pylori of Gram-negative bacteria, but did not inhibit yeasts and molds. They were stable against heat (for 30 min at $100^{\circ}C$), pH (3.0-9.0), long-term storage (for 60 days at 4 or $-20^{\circ}C$), and enzymatic digestion by catalase, proteinase K, papain, lysozyme, trypsin, chymotrypsin, and lipase, etc. Bacteriocin activity was completely inhibited by protease and pepsin, and 50% by ${\alpha}$-amylase. Studies on PCR detection of enterocin structural genes revealed bacteriocins are identical to enterocins A and B.

Partial Purification of Bacteriocin Produced by Enterococcus faecium MJ-14 Isolated from Meju (메주에서 분리된 Enterococcus faecium MJ-14가 생산하는 박테리오신의 부분정제)

  • Lee Jong-Gab;Lee Goon-Ja;Lim Sung-Mee
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • The bacteriocin produced by E. faecium MJ-14 was precipitated with $50\%$ saturated ammonium sulfate in MRS broth and then the precipitated protein was dissolved in 20 mM sodium phosphate buffer (pH 6.0). The crude bacteriocin was purified by CM-sepharose CL 6B and Sephacry S-100 column chormatograhy. In this case, the purification fold of the bacteriocin was 114, therefore, its activity was 127,293 BU/mg of specific activity. Result from SDS-PAGE of the purified bacteriocin, it was obtained two protein bands of 4.3 kDa and 5.8 kDa having antilisterial activity.

Characterization of Anti-Listerial Substance Produced by Lactobacillus salivarius LCH1227 (Lactobacillus salivarius LCH1230으로부터 생산된 Listeria 균 억제물질의 특성)

  • Shin, Yu-Ri;Lim, Kong-Boon;Chae, Jong-Pyo;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.609-616
    • /
    • 2011
  • In this study, a LCH1227 bacterial strain that possesses anti-listerial activity was isolated from fermented food and identified as Lactobacillus salivarius LCH1227 based on its morphological and biochemical properties, as well as its 16S rRNA gene sequences. Anti-listerial substance also inhibited the growth of various Gram-positive bacteria, such as vancomycinresistant Enterococcus faecalis, Streptococcus agalactiae, Bacillus cereus, Lactobacillus fermentum. The highest level of production of antimicrobial substances from L. salivarius LCH1227 occurred during the early stationary phase. The antilisterial activity was found to be stable over a broad range of pH values (2.0-12.0) and after heat treatment. However, it was inactivated by proteolytic enzymes, indicating its proteinaceous nature. The apparent molecular mass of the partially purified anti-listerial substance, as measured by Tricine-SDS-PAGE, was approximately 5 kDa.

Polymer Hydrogels Formulated with Various Cross-Linkers for Food-Surface Application to Control Listeria monocytogenes

  • Kim, Sejeong;Oh, Hyemin;Lee, Heeyoung;Lee, Soomin;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyoung;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.443-446
    • /
    • 2017
  • This study investigated the physical properties of polymers and antimicrobial activities of organic acids on Listeria monocytogenes to develop hydrogels. ${\kappa}-carrageenan$ (1, 2, and 3%), carboxymethylcellulose (CMC; 1, 3, and 5%), and agar (1.5 and 3%) were mixed with cross-linkers ($Na^+$, $K^+$, $Ca^{2+}$, and $Al^{3+}$) or each other by stirring or heating to form cross-linkage, and their physical properties (hardness, elasticity, and swelling) were measured. The hydrogels formulated with organic acid (1, 3, and 5%) were analyzed by spot assay against L. monocytogenes. ${\kappa}-carrageenan$ formed hydrogels with high hardness without other cross-linkers, but they had low elasticity. The elasticity was improved by mixing with other cross-linkers such as $K^+$ or other polymer, especially in 3% ${\kappa}-carrageenan$. CMC hydrogel was formed by adding cross-linkers $Al^{3+}$, $Na^+$, or $Ca^{2+}$, especially in 5% CMC. Thus, stickiness and swelling for selected hydrogel formulations (two of ${\kappa}-carrageenan$ hydrogels and three of CMC hydrogels) were measured. Among the selected hydrogels, most of them showed appropriate hardness, but only 3% ${\kappa}-carrageenan-contained$ hydrogels maintained their shapes from swelling. Hence, 3% ${\kappa}-carrageenan+0.2%$ KCl and 3% ${\kappa}-carrageenan+1%$ alginate+0.2% KCl+0.2% $CaCl_2$ were selected to be formulated with lactic acid, and showed antilisterial activity. These results indicate that 3% ${\kappa}-carrageenan$ hydrogels formulated with lactic acid can be used to control L. monocytogenes on food surface.

Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species

  • Ogaki, Mayara Baptistucci;Rocha, Katia Real;Terra, Marcia Regina;Furlaneto, Marcia Cristina;Furlaneto-Maia, Luciana
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1026-1034
    • /
    • 2016
  • In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene+ strains") were screened for antimicrobial activity. A total of 82.5% of the Gene+ strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

Functional Properties of Yogurt Fermented by Bacteriocin-producing Pediococcus acidilactici (박테리오신 생성 Pediococcus acidilactici 를 적용한 요거트 특성 및 항균성 연구)

  • Hyun, In Kyung;Kim, Min Young;Kim, Seo-Yeon;Lee, Jee-Su;Choi, Ah-Rang;Kang, Seok-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.154-160
    • /
    • 2020
  • Physical and sensory characteristics of commercial yogurts are important aspects for consumer acceptability. In addition, beneficial functions of commercial yogurts are also emphasized for the probiotic dairy products. The aim of this study was to investigate the functional properties of yogurts with the combination of bacteriocin-producing Pediococcus acidilactici. Yogurts fermented with commercial starter culture (control yogurt) and control yogurt together with P. acidilactici HW01 (yogurt+HW01), P. acidilactici JM01 (yogurt+JM01), or P. acidilactici K10 (yogurt+K10) were prepared. During 28 days after fermentation, the viability of lactic acid bacteria, pH, and brix, in the yogurt samples were assessed with standard methods. Moreover, to investigate the antilisterial activity of the yogurt samples, Listeria monocytogenes was simultaneously inoculated when the yogurts were prepared with lactic acid bacteria, and the viability of L. monocytogenes was determined. Although yogurt+K10 did not completely remove L. monocytogenes, control yogurt, yogurt+HW01, and yogurt+JM01 eradicated L. monocytogenes at day 2 after fermentation. However, yogurt+K10 also removed L. monocytogenes at day 3 after fermentation. Taken together, these findings suggest that the combination of yogurt with P. acidilactici does not affect its quality and they may consequently aid in the development of new probiotic yogurt.