Browse > Article
http://dx.doi.org/10.4014/jmb.1509.09020

Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species  

Ogaki, Mayara Baptistucci (Department of Microbiology, Londrina State University)
Rocha, Katia Real (Department of Microbiology, Londrina State University)
Terra, Marcia Regina (Department of Microbiology, Londrina State University)
Furlaneto, Marcia Cristina (Department of Microbiology, Londrina State University)
Furlaneto-Maia, Luciana (Department of Food Microbiology, Federal Technological University of Parana)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.6, 2016 , pp. 1026-1034 More about this Journal
Abstract
In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene+ strains") were screened for antimicrobial activity. A total of 82.5% of the Gene+ strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.
Keywords
Enterocin-encoding genes; antimicrobial activity; Enterococcus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Achemchem F, Martýnez-Bueno M, Abrini J, Valdivia E, Maqueda M. 2005. Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat’s cheese made in Morocco. J. Appl. Microbiol. 99: 141-150.   DOI
2 Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788.   DOI
3 Cintas LM, Casaus P, Herranz C, Havarstein LS, Holo H, Hernández PE, Nes IF. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806-6814.   DOI
4 Cleveland J, Montville T, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.   DOI
5 Coburn PS, Gilmore MS. 2003. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol. 5: 661-669.   DOI
6 Cintas LM, Casaus P, Håvarstein LS, Hernandez PE, Nes IF. 1997. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63: 4321-4330.
7 El-Ghaish S, Ahmadova A, Hadji-Sfaxi I, El-Mecherfi KE, Bazukyan I, Choiset Y, et al. 2011. Potential use of lactic acid bacteria for reduction of allergenicity and for longer conservation of fermented foods. Trends Food Sci. Technol. 22: 509-516.   DOI
8 De Vuyst L, Moreno MF, Revets H. 2003. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int. J. Food Microbiol. 84: 299-318.   DOI
9 Ananou S, Baños A, Maqueda M, Martínez-Bueno M, Gálvez A, Valdivia E. 2010. Effect of combined physicochemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21: 478-486.   DOI
10 Ahmadova A, Todorov SD, Choiset Y, Rabesona H, Zadi TM, Kuliyev A, et al. 2013. Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control 30: 631-641.   DOI
11 Ananou S, Garriga M, Hugas M, Maqueda M, Martínez-Bueno M, Gálvez A, Valdivia E. 2005. Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int. J. Food Microbiol. 103: 179-190.   DOI
12 Burgos MJG, Pulido RP, Aguayo MCL, Gálvez A, Lucas R. 2014. The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int. J. Mol. Sci. 15: 22706-22727.   DOI
13 Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293-310.   DOI
14 De Vuyst L, Callewaert R, Crabbe K. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142: 817-827.   DOI
15 Du Toit MD, Franz CMAP, Dicks LMT, Holzapfel WH. 2000. Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88: 482-494.   DOI
16 Fisher K, Phillips C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155: 1749-1757.   DOI
17 Franz CMAP, Worobo RWW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME. 1999. Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl. Environ. Microbiol. 65: 2170-2178.
18 Grande MAJ, Lucas R, Abriouel H, Ben Omar N, Maqueda M, Martínez-Bueno M, et al. 2005. Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int. J. Food Microbiol. 104: 289-297.   DOI
19 Giraffa G. 2002. Enterococci from foods. FEMS Microbiol. Rev. 26: 163-171.   DOI
20 Giraffa G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222.   DOI
21 Harris LJ, Daeschel MA, Stiles ME, Klaenhammer TR. 1989. Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Prot. 52: 384-387.   DOI
22 Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, et al. 2012. Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci. Biotechnol. Biochem. 76: 947-953.   DOI
23 Kjos M, Nes IF, Diep DB. 2009. Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology 155: 2949-2961.   DOI
24 Sparo MD, Corso A, Gagetti P, Delpech P, Ceci M, Confalonieri A, et al. 2012. Enterococcus faecalis CECT712: biopreservation of crafted goat cheese. Int. J. Probiotics Prebiotics 7: 145-152.
25 Khan H, Flint S, Yu PL. 2010. Enterocins in food preservation. Int. J. Food Microbiol. 141: 1-10.   DOI
26 Hardie JM, Whiley RA. 1997. Classification and overview of the genera Streptococcus and Enterococcus. Soc. Appl. Bacteriol. Symp Ser. 26: 1S-11S.   DOI
27 Cotter PD, Ross RP, Hill C. 2013. Bacteriocins – A viable alternative to antibiotics? Nat. Rev. Microbiol. 11: 95-105.   DOI
28 Creti R, Bertuccini L, Fabretti F, Rosa DR, Baldassarri L. 2004. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J. Med. Microbiol. 53: 13-20.   DOI
29 Daeschel MA. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43: 164-167.
30 Shin MS, Han SK, Ji AR, Kim KS, Lee WK. 2008. Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol. 105: 2203-2212.   DOI
31 Strompfová V, Lauková A, Simonová M, Marciňákova M. 2008. Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Vet. Microbiol. 132: 293-301.   DOI
32 Todorov SD, Dicks LMT. 2006. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol. Res. 161: 102-108.   DOI
33 Todorov SD, Dicks LMT. 2005. Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J. Microbiol. 43: 370-374.
34 Sabia C, De Niederhäusern S, Guerrieri E, Messi P, Anacarso I, Manicardi G, Bondi M. 2008. Detection of bacteriocin production and virulence traits in vancomycin-resistant enterococci of different sources. J. Appl. Microbiol. 104: 970-979.   DOI
35 De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LMT. 2005. Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against gram-positive and gram-negative bacteria. Int. J. Food Microbiol. 105: 433-444.   DOI
36 Del Campo R, Tenorio C, Jimenez-Diaz R, Rubio C, Gomez-Lus R, Baquero F, Torres C. 2001. Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrob. Agents Chemother. 45: 905-912.   DOI
37 Bellei B, Miguel M, Mere del Aguila EM, Silva JT, Paschoalin VMF. 2011. Purification of a bacteriocin produced by Enterococcus faecium and its effectiveness for preservation of fresh-cut lettuce. J. Microbiol. Antimicrob. 3: 119-125.
38 Gillor O, Etzion A, Riley MA. 2008. The dual role of bacteriocins and anti- and probiotics. Appl. Microbiol. Biotechnol. 81: 591-606.   DOI
39 Foulquié Moreno MR, Rea MC, Cogan TM, De Vuyst L. 2003. Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int. J. Food Microbiol. 81: 73-84.   DOI
40 Furlaneto-Maia L, Rocha KR, Siqueira VLD, Furlaneto MC. 2014. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus sp. Rev. Inst. Med. Trop. Sao Paulo 56: 1-11.   DOI
41 Rehaiem A, Belgacem ZB, Edalatian MR, Martínez B, Rodríguez A, Manai M, Guerra NP. 2014. Assessment of potential probiotic properties and multiple bacteriocin-encoding genes of the technological performing strain Enterococcus faecium MMRA. Food Control 37: 343-350.   DOI
42 Sánchez J, Basanta A, Gómez-Sala B, Herranz C, Cintas LM, Hernández PE. 2007. Antimicrobial and safety aspects, and biotechnological potential of bacteriocinogenic enterococci isolated from mallard ducks (Anas platyrhynchos). Int. J. Food Microbiol. 117: 295-305.   DOI
43 Rivas F, Castro M, Vallejo M. 2012. Antibacterial potential of Enterococcus faecium strains isolated from ewes milk and cheese. LWT Food Sci. Technol. 46: 428-436.   DOI
44 Aymerich T, Holo H, Håvarstein LS, Hugas M, Garriga M, Nes IF. 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 64: 1676-1682.
45 Casaus F, Nilsen T, Cintas LM, Nes LF, Hernández PE, Holo H. 1997. Enterocin B, a new bacteriocin from Enterococcus faecium TI36 which can act synergistically with enterocin A. Microbiology 143: 2287-2294.   DOI
46 Castro A, Montaño A, Casado FJ, Sánchez AH, Rejano I. 2002. Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol. 19: 637-644.   DOI
47 Ananou S, Maqueda M, Martínez-Bueno M, Gálvez A, Valdivia E. 2005. Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Sci. 71: 549-556.   DOI
48 Sonomoto K, Nishie M, Nagao JI. 2012. Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Sci. 17: 1-6.   DOI
49 Furlaneto-Maia L, Rocha KR, Henrique FC, Giazzi A, Furlaneto MC. 2014. Antimicrobial resistance in Enterococcus sp. isolated from soft cheese in Southern Brazil. Adv. Microbiol. 4: 175-181.   DOI
50 Gálvez A, Abriouel H, López RL, Ben Omar N. 2007. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51-70.   DOI
51 Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C. 2007. Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol. Res. 162: 257-263.   DOI
52 Muguerza B, Ramos M, Sánchez E, Manso MA, Miguel M, Aleixandre A, et al. 2006. Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. Int. Dairy J. 16: 61-69.   DOI
53 Klibi N, Jouini A, Rojo-Bezares B, Masmoudi A, Ruiz-Larrea F, Boudabous A, Torres C. 2008. Phenotypic and genotypic characterization of bacteriocins in clinical enterococcal isolates of Tunisia. World J. Microbiol. Biotechnol. 24: 653-657.   DOI
54 Özdemir GB, Oryasm E, Biyik HH, Özteber M, Bozdoğan B. 2011. Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Ind. J. Microbiol. 51: 182-187.   DOI
55 Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, Valdivia E. 2007. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism with heat. Int. Dairy J. 17: 760-769.   DOI
56 Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113-128.   DOI
57 Ogunbanwo ST, Sanni AI, Onilude AA. 2003. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr. J. Biotechnol. 2: 179-184.   DOI
58 Pangallo D, Harichová J, Karelová E, Drahovská H, Chovanová K, Ferianc P, et al. 2004. Molecular investigation of enterococci isolated from different environmental sources. Biologia 59: 829-837.
59 Lewus CB, Kaiser A, Monteville TJ. 1991. Inhibition of foodborne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 57: 1683-1688.
60 Kjos M, Borrero B, Opsata M, Birri DJ, Holo H, Cintas LM, et al. 2011. Target recognition, resistance, immunity and genome mining of class II bacteriocins from gram-positive bacteria. Microbiology 157: 3256-3267.   DOI
61 Marques EB, Suzart S. 2004. Occurrence of virulence-associated genes in clinical Enterococcus faecalis strains isolated in Londrina, Brazil. J. Med. Microbiol. 53: 1069-1073.   DOI
62 Manolopoulou E, Sarantinopoulos P, Zoidou E, Aktypis A, Moschopoulou E, Kandarakis IG, Anifantakis EM. 2003. Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int. J. Food Microbiol. 82: 153-161.   DOI
63 Yang E, Fan L, Jiang Y, Doucette C, Fillmore S. 2012. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2: 6-12.   DOI
64 Turgis M, Dang Vu K, Lacroix M. 2013. Partial characterization of bacteriocins produced by two new Enterococcus faecium isolated from human intestine. Probiotics Antimicrob. Proteins 5: 110-120.   DOI