Browse > Article
http://dx.doi.org/10.5851/kosfa.2015.35.1.137

Antilisterial Bacteriocin from Lactobacillus rhamnosus CJNU 0519 Presenting a Narrow Antimicrobial Spectrum  

Jeong, Ye-Jin (Department of Biotechnology, Korea National University of Transportation)
Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation)
Publication Information
Food Science of Animal Resources / v.35, no.1, 2015 , pp. 137-142 More about this Journal
Abstract
A lactic acid bacterium presenting antimicrobial activity against a Lactobacillus acidophilus strain used for eradication of acid inhibition was isolated from a natural cheese. The 16S rRNA gene sequence of the isolate best matched with a strain of L. rhamnosus and was designated L. rhamnosus CJNU 0519. The antimicrobial activity of the partially purified bacteriocin of CJNU 0519 was abolished when treated with a protease, indicating the protein nature of the bacteriocin. The partially purified bacteriocin (rhamnocin 519) displayed a narrow antimicrobial activity against L. acidophilus, Listeria monocytogenes, and Staphylococcus aureus among several tested bacterial and yeast strains. Rhamnocin 519 in particular showed strong bactericidal action against L. monocytogenes.
Keywords
bacteriocin; Lactobacillus rhamnosus; narrow-range spectrum; Listeria monocytogenes; probiotics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ward, L. J., Brown, J. C., and Davey, G. P. (1994) Application of the ligase chain reaction to the detection of nisinA and nisinZ genes in Lactococcus lactis ssp. lactis. FEMS Microbiol. Lett. 117, 29-33.   DOI
2 Rea, M. C., Dobson, A., O'Sullivan, O., Crispie, F., Fouhy, F., Cotter, P. D., Shanahan, F., Kiely, B., Hill, C., and Ross, R. P. (2011) Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA 108 Suppl. 1, 4639-4644.   DOI   ScienceOn
3 Nes, I. F. and Holo, H. (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55, 50-61.   DOI
4 Lohans, C. T. and Vederas, J. C. (2012) Development of class IIa bacteriocins as therapeutic agents. Int. J. Microbiol. 2012, 386-410.
5 Markkula, A., Mattila, M., Lindström, M., and Korkeala, H. (2012) Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3℃. Environ. Microbiol. 14, 2223-2232.   DOI   ScienceOn
6 Mehta, R., Arya, R., Goyal, K., Singh, M., and Sharma, A. K. (2013) Bio-preservative and therapeutic potential of pediocin: recent trends and future perspectives. Recent Pat. Biotechnol. 7, 172-178.   DOI
7 Cui, Y., Zhang, C., Wang, Y., Shi, J., Zhang, L., Ding, Z., Qu, X., and Cui, H. (2012) Class IIa bacteriocins: diversity and new developments. Int. J. Mol. Sci. 13, 16668-16707.   DOI   ScienceOn
8 Moon, G. S., Jeong, J. J., Ji, G. E., Kim, J. S., and Kim, J. H. (2000) Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10, 507-513.
9 Lalpuria, M., Karwa, V., Anantheswaran, R. C., and Floros, J. D. (2013) Modified agar diffusion bioassay for better quantification of Nisaplin®. J. Appl. Microbiol. 114, 663-671.   DOI   ScienceOn
10 Larkin, E. A., Carman, R. J., Krakauer, T., and Stiles, B. G. (2009) Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr. Med. Chem. 16, 4003-4019.   DOI   ScienceOn
11 Daeschel, M. A. (1992) Procedures to detect antimicrobial activities of microorganisms. In: Food biopreservatives of microbial origin. Ray, B. and Daeschel, M. (eds) CRC Press, FL, pp. 57-80.
12 Bali, V., Panesar, P. S., Bera, M. B., and Kennedy, J. F. (2014) Bacteriocins: recent trends and potential applications. Crit. Rev. Food Sci. Nutr. [Epub ahead of print]
13 Chung, D. M., Kim, K. E., Jeong, S. Y., Park, C. S., Ahn, K. H., Kim, D. H., Kang, D. O., Chun, H. K., Yoon, B. D., Koh, H. B., Kim, H. J., and Choi, N. S. (2011) Rapid concentration of some bacteriocin-like compounds using an organic solvent. Food Sci. Biotechnol. 20, 1457-1459.   DOI
14 Cotter, P. D., Ross, R. P., and Hill, C. (2013) Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95-105.   DOI
15 Nilsen, T., Nes, I. F., and Holo, H. (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69, 2975-2984.   DOI
16 Pawlowska, A. M., Zannini, E., Coffey, A., and Arendt, E. K. (2012) “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv. Food Nutr. Res. 66, 217-238.   DOI   ScienceOn
17 Rodríguez, J. M., Martínez, M. I., and Kok, J. (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91-121.   DOI   ScienceOn
18 Lauková, A., Chrastinová, L., Plachá, I., Kandrièáková, A., Szabóová, R., Strompfová, V., Chrenková, M., Cobanová, K., and Zitòan, R. (2014) Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 6, 41-46.   DOI   ScienceOn
19 Ross, R. P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J., and Hill, C. (1999) Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek 76, 337-346.   DOI   ScienceOn
20 Rossi, M. L., Paiva, A., Tornese, M., Chianelli, S., and Troncoso, A. (2008) Listeria monocytogenes outbreaks: a review of the routes that favor bacterial presence. Rev. Chilena Infectol. 25, 328-335.
21 Yu, Y., Zhang, Q., and van der Donk, W. A. (2013) Insights into the evolution of lanthipeptide biosynthesis. Protein Sci. 22, 1478-1489.   DOI
22 Lee, K. H., Moon, G. S., An, J. Y., Lee, H. J., Chang, H. C., Chung, D. K., Lee, J. H., and Kim, J. H. (2002) Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12, 389-397.
23 Dimitrijević, R., Stojanović, M., Zivković, I., Petersen, A., Jankov, R. M., Dimitrijević, L., and Gavrović-Jankulović, M. (2009) The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol. 107, 2108-2115.   DOI   ScienceOn
24 Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., and Prévost, H. (2006) The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70, 564-582.   DOI   ScienceOn
25 Gahan, C. G. and Hill, C. (2014) Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect. Microbiol. 4, 9.
26 Han, K. S., Kim, Y., Kim, S. H., and Oh, S. (2007) Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B. J. Microbiol. Biotechnol. 17, 774-783.
27 Joerger, M. C. and Klaenhammer, T. R. (1990) Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J. Bacteriol. 172, 6339-6347.   DOI
28 Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-86.   DOI
29 Kwon, D. Y., Koo, M. S., Ryoo, C. R., Kang, C. H., Min, K. H., and Kim, W. J. (2002) Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12, 96-105.
30 Allen, H. K., Trachsel, J., Looft, T., and Casey, T. A. (2014) Finding alternatives to antibiotics. Ann. N. Y. Acad. Sci. 323, 91-100.
31 Bali, V., Panesar, P. S., and Bera, M. B. (2014) Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Crit. Rev. Biotechnol. [Epub ahead of print]