• Title/Summary/Keyword: antihyperglycemic effect

Search Result 39, Processing Time 0.03 seconds

Improvement of Lipid Metabolism and Antihyperglycemic by Lentinus edodes in High Fat-fed and Streptozotocin-treated Rats (고지방과 streptozotocin으로 유도한 제 2형 당뇨에서 표고버섯이 지질대사와 항당뇨 효능에 미치는 영향)

  • Kim, Gye Yeop;Yoon, Young Jeoi;Kim, Eun Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.196-201
    • /
    • 2013
  • Abnormal regulation of glucose and impaired lipid metabolism that result from a defective or deficient insulin are the key etiological factor in type 2 diabetes mellitus (T2DM). The our study evaluated the beneficial effect of diet supplementation with Lentinus edodes on hyperglycemia and lipid metabolism in normal and type 2 diabetic rats. The animals were divided into 4 groups: group I(control) rats were fed standard diet (12% of calories as fat); group II (T2DM) rats were fed HFD (40% of calories as fat) for 2 weeks and then injected with STZ (50 mg/kg); group III and group IV rats were continually fed a diet containing 1% and 10% Lentinus edodes for 4 weeks after T2DM induction, respectively. After 4 weeks we determined biochemical parameters such as glucose, insulin concentration, serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and glycosylated hemoglobin (HbA1c) concentration were also measured. There was a significant reduction in serum TC and TG in the Lentinus edodes supplement groups. The Lentinus edodes diet supplementation were found to have a potent lipid metabolism improvement as well as LDL concentration decreased and HDL concentration was increased. Concentrations of blood glucose and HbA1c in the experimental groups II were significantly decreased after 4 weeks compared with the control group. The Lentinus edodes diet supplementation is useful in regulating the glucose level, improves the insulin, HbA1c, serum lipid metabolism in experimental diabetic rats. We suggest that Lentinus edodes supplementation may have the control effects of diabetes mellitus by improving blood glucose control and lipid metabolism.

Anti-hyperglycemic Effect of Cortex Mori radicis in db/db Mice (db/db 마우스에서 상백피의 혈당강하효과)

  • Kim, Youn-Young;Choue, Ryo-Won;Chung, Sung-Hyun;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1057-1064
    • /
    • 1999
  • Cortex Mori radicis has been used in the treatment of diabetes mellitus. In this study, the antihyperglycemic effect of Cortex Mori radicis was observed in obese diabetic mice(C57BLKsJ db/db). Cold water extract of Cortex Mori radicis was supplied in tab water(500, 1000 mg/kg/day) with normal chow for 5 weeks. Food intake and body weight gain were decreased significantly in experimental group. Also experimental group exhibited lower fasting serum glucose level when compaired to control group. Hb Alc level and triglyceride level were lowered in a dose-dependent manner. The activity of small intestinal disaccharidases was decreased at most segments. In conclusion, Cortex Mori radicis has anti-obesity effect to reduce food intake and body weight gain. And it is able to decrease the activity of small intestinal disaccharides and thus it can reduce serum glucose level and triglyceride level.

  • PDF

Antihyperglycemic of Gleditschiae Spina Extracts in Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats (Streptozotocin-Nicotinamide로 유도된 제2형 당뇨모델 쥐에서 조각자(Gleditschiae Spina) 추출물의 항당뇨효과)

  • Park, Jae-Hee;Chu, Won-Mi;Lee, Jeung-Min;Park, Hae-Ryong;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.321-326
    • /
    • 2011
  • The aim of the present study was to investigate antihyperglycemic effect of Gleditschiae Spina (GS) in streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic rats. The rats were divided into four groups: normal control (NC), diabetic control (DC), diabetic rats supplemented with acarbose (AC, 4 mg/kg), and with GS ethanol extracts (GSE, 50 mg/kg). Weekly fasting blood glucose (FBG) for 10 weeks and oral glucose tolerance test (OGTT) at 10th week were monitored using glucose oxidase-peroxidase reactive strips. The FBG level was significantly reduced in AC group after 8 weeks and in GSE group at the end of period. The AUCs for the glucose response from OGTT and blood glucose level after sacrifice were significantly lower in the AC and GSE groups than the DC group. GSE supplementation significantly increased plasma total radical-trapping antioxidant potential (TRAP) in STZ-NA-induced diabetic rats, compared with DC group. The present study indicates that GSE could ameliorate type 2 diabetes and be comparable to acarbose, a standard hypoglycemic drug. Also, we suggest that GSE may possess antioxidant activity against the STZ-NA-induced oxidative stress.

Antihyperglycemic Effects of Green Tea Extract on Alloxan-Induced Diabetic and OLETF Rats (Alloxan 당뇨쥐(제1형 당뇨병 모델)와 OLETF 쥐(제2형 당뇨병 모델)에서 녹차 추출물의 고혈당 억제 효과)

  • Lee, Byoung-Rai;Koh, Ki-Oh;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.696-702
    • /
    • 2007
  • This study was performed to investigate the antihyperglycemic effect of green tea extracts (GTE) in diabetic rats. Experimental animals used were alloxan-induced diabetic Sprague-Dawley (SD) rats; as a model of type 1 diabetes mellitus and Otsuka Long Evans Tokushima fatty (OLETF) rats, and as a model of type 2 diabetes mellitus. Animals were randomly assigned either to continue the ad libitum diet or begin a green tea extracts (GTE) contained diet. GTE extracted from green tea was supplemented in the diet (2%). Body weight, food intake, and blood glucose concentration were recorded for 4 weeks. Animals were killed and glucose, triglyceride, and asparate aminotransferase (AST) were analysed in blood. Food intake was not affected by GTE in both alloxan.induced diabetic and OLETF rats but body weight was slightly decreased by GTE in OLETF rats. The blood glucose concentration was markedly decreased by GTE supplementation in both alloxan-induced diabetic and OLETF rats; however, triglyceride and AST levels in serum of GTE treated animals were not changed. This study shows that GTE beneficially modulate blood glucose concentration in diabetic animals. Dietary supplementation with GTE could potentially contribute to nutritional strategies for the treatment of diabetes mellitus.

Effects of Phytoestrogens on Glucose Metabolism in C57BL/KsOlaHsd-db/db Mice (주요 Phytoestrogen들이 제2형 당뇨 마우스의 당질대사에 미치는 효과)

  • Seo, Bo-Hyeon;Kim, Kwang-Ok;Lee, Ji-Hye;Lee, Hye-Sung
    • Journal of Nutrition and Health
    • /
    • v.44 no.4
    • /
    • pp.275-283
    • /
    • 2011
  • This study was conducted to evaluate the antihyperglycemic effects of three phytoestrogens, genistein, coumestrol, and enterolactone, in type 2 diabetic animals. Forty male C57BL/KsOlaHsd-db/db mice were used as a diabetic animal model. The animals were divided into four groups and fed a phytoestrogen-free AIN-76 diet (control), or one of three phytoestrogen-supplemented (3.75 mg/100 g diet) AIN-76 diets for six weeks. During the experimental period, fasting blood glucose levels were measured on week 0, 2, 5, and 6 of the experiment, and oral glucose tolerance tests were performed on the 5th week. After the experimental period, blood concentrations of HbA1c, insulin, and glucagon were measured, and hepatic glycogen content and glucose regulating enzyme activities were analyzed. Fasting blood glucose, HbA1c level, and the area under the blood glucose curve in the oral glucose tolerance test were significantly lower in all of the phytoestrogen-supplemented groups compared to the control group. Plasma glucagon levels were also significantly lower in all of the phytoestrogen-supplemented groups compared to the control group. Hepatic glycogen level was significantly higher in the coumestrol-supplemented group compared to the other groups. However, there were no significant differences in the activities of glucokinase and glucose-6-phosphatase between the groups. These results suggest that all of the three major phytoestrogens tested in the present study were effective in lowering blood glucose levels in type 2 diabetic animals. However, further studies need to be conducted to elucidate the exact mechanism for the hypoglycemic effects of phytoestrogens.

Inhibitory activity of Euonymus alatus against alpha-glucosidase in vitro and in vivo

  • Lee, Soo-Kyung;Hwang, Ji-Yeon;Song, Ji-Hyun;Jo, Ja-Rim;Kim, Myung-Jin;Kim, Mi-Eun;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.1 no.3
    • /
    • pp.184-188
    • /
    • 2007
  • The major goal in the treatment of diabetes mellitus is to achieve near-normal glycemic control. To optimize both fasting blood glucose and postprandial glucose levels is important in keeping blood glucose levels as close to normal as possible. ${\alpha}-Glucosidase$ is the enzyme that digests dietary carbohydrate, and inhibition of this enzyme could suppress postprandial hyperglycemia. The purpose of this study was to test the inhibitory activity of methanol extract of Euonymus alatus on ${\alpha}-glucosidase$ in vitro and in vivo to evaluate its possible use as an anti-diabetic agent. Yeast ${\alpha}-glucosidase$ inhibitory activities of methanol extract of E. alatus were measured at concentrations of 0.50, 0.25, 0.10, and 0.05 mg/ml. The ability of E. alatus to lower postprandial glucose was studied in streptozotocin-induced diabetic rats. A starch solution (1 g/kg) with and without E. alatus extract (500 mg/kg) was administered to diabetic rats by gastric intubation after an overnight fast. Plasma glucose levels were measured at 30, 60, 90, 120, 180, and 240 min. Plasma glucose levels were expressed in increments from baseline, and incremental areas under the response curve were calculated. Extract of E. alatus, which had an $IC_{50}$ value of 0.272 mg/ml, inhibited yeast ${\alpha}-glucosidase$ activity in a concentration-dependent manner. A single oral dose of E. alatus extract significantly inhibited increases in blood glucose levels at 60 and 90 min (p<0.05) and significantly decreased incremental response areas under the glycemic response curve (p<0.05). These results suggest that E. alatus has an antihyperglycemic effect by inhibiting ${\alpha}-glucosidase$ activity in this animal model of diabetes mellitus.

Effect of Artemisia iwayomogi Ethanol Extract on Hypoglycemic and Antioxidant Activities in Diabetic Rats (더위지기 추출물이 당뇨 흰쥐의 혈당과 항산화 효소 활성도에 미치는 영향)

  • Han, Hye Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1716-1726
    • /
    • 2012
  • This study was undertaken to evaluate the antihyperglycemic, antilipid peroxidative, and antioxidant effects of the ethanol extracts of Artemisia iwayomogi (Ai) in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Sprague-Dawley rats with a single intravenous injection (45 mg/kg b.w.) of STZ. The diabetic rats were then randomized to the diabetic and Ai extract therapy groups which were treated with Ai extract at doses of 1, 2, and 3 g/kg b.w./day, respectively, for 14 days. Oral administration of Ai (2 g/kg b.w.) significantly decreased their intake of food. Dosage of 2 g/kg of the extract significantly decreased blood glucose levels in the glucose level in diabetic rats after 4 day, there was no significant difference observed at 1 and 3 g/kg. A dose of 2 or 3 g/kg of the Ai extract significantly reduced plasma glucose levels in STZ-induced hyperglycemic rats at 7 days. The hypoglycemic effect of Ai at a dose of 2 g/kg was significantly more effective than that of STZ-control. The effect was more pronounced in 2 g/kg than 1 g and 3 g/kg. A significant reduction in triglycerides (TG) and free fatty acids (FFA), and a significant increase in liver glycogen were observed in treated diabetic rats at doses of 2 g/kg after 14 days of treatment. Administration of Ai extracts to diabetic rats showed a significant decrease in liver malondialdehyde (MDA) levels. The activity of superoxide dismutase (SOD) was significantly increased in the 3 g extract-supplemented groups. The activities of glutathione peroxidase (GSH-px) and catalase (CAT) were significantly increased in the 1 g and 3 g extract-supplemented groups. Ai extract significantly increased glutathione-S transferase (GST) activity in a dose-dependent manner compared with treatment in STZ-control rats. Our result supports the fact that the administration of Ai extract is able to reduce hyperglycemia and hyperlipidemia risk, and also reduce the oxidative stress in diabetic rats.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

Effect of Acetic Acid Fermented Juice Prepared Using Submerged Culture Media of Antrodia camphorata Mycelium on Blood Glucose and Lipid Profiles of Rats in which Diabetes was Induced with Streptozotocin (우장지 버섯(Antrodia camphorata) 균사체 배양액으로 제조한 초산발효액이 Streptozotocin으로 유발한 당뇨흰쥐의 혈당과 혈중지질함량에 미치는 영향)

  • Shin, Jong-Wook;Lee, Sang-Il;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.725-730
    • /
    • 2008
  • The effects of acetic acid fermented juice prepared with submerged culture media of Antrodia camphorata mycelium (AJA: pH 3.2, acidity 2.0, Brix degree 3.2) on blood glucose levels and serum lipid profiles of rats in which diabetes was induced with streptozotocin (STZ) were investigated. Rats were divided into normal controls (NC), diabetic controls (DM), and groups receiving diluted (1:1, with water) AJA (A1) and undiluted AJA (A2). The volume of liquid given to both A1 and A2 animals was 0.5 mL/100 g body weight. In the A1 and A2 groups, compared with the DM group, polyphagia, liver enlargement, and weight loss caused by diabetes were considerably alleviated, but did not attain the levels of NC group rats. In the A1 and A2 groups, the levels of blood glucose were 17.1% and 28.2% lower than in the DM group. There was no significant difference in the levels of fructosamine between the DM and A1 group, but the A2 group had a level 16.3% lower than the DM group. In the A1 and A2 groups, compared with the DM group, serum triglyceride levels decreased by 44.1-48.0%, serum total cholesterol by 24.0-31.1%, and serum LDL-cholesterol by 25.2-51.1%. The level of HDL-cholesterol in A2 animals rose by 45.9% compared to NC rats. The results show that AJA may be a useful beverage for diabetes patients, offering both antihyperglycemic activity and improvement in levels of serum lipids.