• Title/Summary/Keyword: antifungal microorganism

Search Result 56, Processing Time 0.024 seconds

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Antifungal Activity of Extract from Xmthitim strumarium L. Against Plant Pathogenous fungi. (식물 병원성진균에 대한 도꼬마리 추출물의 항 진균활성)

  • Park, Sung-Min;Jung, Hyuck-Jun;Han, Sun-Hee;Yeo, Soo-Hwan;Kim, Young-Won;Ahn, Hyung-Geun;Kim, Hyun-Soo;Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.692-695
    • /
    • 2005
  • Antifungal activity of ether and ethylacetate extract from Xanthium strumarium L. were tested against 11 plant pathogens by agar diffusion method. Antifungal activity of the ether and ethylacetate extract showed strong antifungal activity against plant pathogenous fungi, i.e. Phytophthora capsici, Sclerotinia sclerotiorum and Aspergillus niger. The $IC_{50}$ of the ether extract against Sclerotinia sclerotiorum was determined $335{\mu}g/ml$ Antifungal activity of the ether extract from Xanthium strumarium L. showed Rf value=0.87 on TLC plate.

Isolation of Antifungal Bacterial Strain Bacillus sp. against Gray Mold infected in Kiwi Fruits and its Disease Control (참다래 잿빛곰팡이 병원균에 대한 길항균 Bacillus sp. 분리와 병해 억제 작용)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.399-410
    • /
    • 2006
  • This study was carried out to identity the effects of antifungal bacteria isolated from the soil grown kiwi fruit plants on the growth inhibition of Botrytis cinerea causing gray mold in kiwi fruit plants in the southern districts of Jeonnam. Two hundred and fifty antagonistic microorganisms were isolated and examined into the antifungal activity against Botrytis cinerea. We screened and isolated four bacterial strains which strongly inhibited Botrytis cinerea from the soil grown kiwi fruit plants. And the best antifungal bacterial strain which called CHO 163 was finally selected. Antagonistic microorganism CHO 163 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. CHO 163 showed 86.9% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. CHO 163 showed almost all of antagonistic activity against Botrytis cinerea. And we also confirmed that in vitro the treatment of Bacillus sp. CHO 163 cultured by SD+B+P broth efficiently controled the growth of Botrytis cinerea causing gray mold in kiwi fruit plants.

  • PDF

Antifungal activity of a chitinase purified from bean leaves (강낭콩 잎에서 정제한 키틴분해효소의 항균활성)

  • Park, Ro-Dong;Song, Kyong-Sook;Jung, Ihn-Woong
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.191-195
    • /
    • 1992
  • In order to elucidate the plant-microorganism relationship, we purified an ethylene-inducible, basic 30 KD endochitinase from bean leaves and studied its antifungal activity by a hyphal extension-inhibition assay. The purified chitinase was effective in the inhibition of hyphal growth of Aspergillus fumigatus, Botrytis cinerea, Fusarium oxysporum, Rhizoctonia solani, while microbial chitinases of Serratia marcescens and Streptomyces griceus, egg white lysozyme and papya protease didn't affect hyphal growth of the fungi. The chitinase degraded the cell walls of Micrococcus lysodeikticus, suggesting the lysozyme activity of the chitinase. We discussed the implication of the bifunctional chitinase/lysozyme activities of the protein with hydrolysis of chitin in the rapidly extending hyphae of the fungi.

  • PDF

Biological Control of Blue Mold by Microorganism (잿빛 곰팡이병의 미생물학적 제어)

  • 조정일;조자용;안병렬
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.121-130
    • /
    • 2000
  • In order to screen the antagonistic bacteria which inhibit the growth of the plant pathogen, Penicillum expansum, we isolated an effective bacterial strain and investigated into the antifungal activity of the antagonist and it's identification. The eleven strains of bacteria which strongly inhibited P. expansum were isolated from the nature, and the best antagonistic bacterial strain designated as KB22, was selected. The antagonistic strain KB22 was identified to be the genus Bacillus subtilis based on morphological and biochemical characterization, The KB22 showed 55.9% of antifungal activity against the growth of P. erpansum. By the treatment of the culture broth and the heat treated culture filtrate of it, the B. subtilis KB22 showed 90% and 15% of antifungal activity, respectively.

  • PDF

Isolation and Identification of Antifungal Compounds from Eugenia caryophyllata Extracts (정향 추출물로부터 항진균성 물질의 분리 및 동정)

  • Lee, Jin-Man;Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.740-747
    • /
    • 2014
  • Antifungal properties of clove(Eugenia caryophyllata) against food spoilage microorganism, Penicillium rugullosum IFO 4683 was investigated. Antifungal activity of the essential oil was as equivalent as potassium metabisulfite and myconazole. The clove extracts was fractionated to hexane, chloroform, ethyl acetate, butanol and water fraction. Hexane fraction showed the highest inhibitory effect on the Penicillium rugullosum IFO 4683. Hexane fraction was further fractionated by silica gel column chromatography and thin layer chromatography(TLC). The antifungal compound was isolated from their fractions and their chemical structures were identified as eugenol, eugenol acetate and chavicol by EI-MS, $^1H$-NMR and $^{13}C$-NMR.

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.

Selection of Antagonistic Microorganisms against Plant Pathogens from Eco-friendly Formulations (친환경 제제로부터 식물병원균에 대한 길항 미생물의 선발)

  • Gang, Guen-Hye;Cha, Jae-Yul;Heo, Bit-Na;Yi, Og-Sun;Lee, Yong-Bok;Kwak, Youn-Sig
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • BACKGROUND: Some microorganisms extant in nature have ability to suppress various plant pathogens, and also can promote plant growth. Thus microorganisms are such great source of antimicrobial agents to develop antagonistic microorganism production and eco-friendly crop management. We isolated the microorganisms in various eco-friendly formulations. The suppressive abilities against plant pathogens have been characterized in vitro level. METHODS AND RESULTS: The indigenous microorganisms have been isolated from Cooked rice, Black sugar, Rice Bran, and Red clay using dilution plating method. Population of bacteria and fungi were above 107 in the all formulations. We isolated and pure cultured the microorganisms based on morphological characteristics. Three major plant pathogens (Fusarium oxysporum, Rhizoctonia solani, Phytophthora capsici) have been used to select antagonistic microorganisms. Total 20 bacteria and 9 fungi showed the pathogen growth suppression ability in vitro condition. The selected microorganisms were identified by ITS sequence similarity. CONCLUSION: All tested eco-friendly formulations contained high-density of the microorganisms. Among the isolated microorganisms, Bacillus spp. and Streptomyces spp. showed the most effective antifungal activity against the plant pathogens such as F. oxysporum, R. solani, and P. capsici. Among the selected fungi Trichoderma sp. demonstrated antifungal activity. Our results suggest that the currently adapted eco-friendly formulations might useful for sustain agricultural system.

Screening and Isolation of Antagonistic Actinomyces #120 against the Kiwi Fruit Rot for the Environment-Friendly Culture of Kiwifruits (참다래의 친환경재배를 위한 과숙썩음병원균에 대한 길항성 방선균 #120의 선발 및 분리)

  • Cho, Jung-Il;Cho, Ja-Yong;Park, Yong-Seo;Son, Dong-Mo;Heo, Buk-Gu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.252-257
    • /
    • 2007
  • This study was carried out to clarify the effects of antifungal Streptomyces sp. isolated from the soil grown kiwifruit on the growth inhibition of fruit rot (Botryosphaeria dothidea) infected in kiwi fruit plants in the southwestern districts of Jeonnam. Two hundred and fifty microorganisms were isolated and examined into the antifungal activity against Botryosphaeria dothidea. We screened and isolated six bacterial strains which have a strong inhibition against Botryosphaeria dothidea. And the best antifungal strain designated as the strain #120 showing 96.0% antifungal activity against Botryosphaeria dothidea was finally selected. The strain #120 was identified as Streptomyces sp. #120 based on its morphological, physiological, biochemical and chemotaxonomic characteristics.

Isolation of Fungal Deteriogens Inducing Aesthetical Problems and Antifungal Calcite Forming Bacteria from the Tunnel and Their Characteristics (터널에서 미학적 문제를 야기하는 진균 및 항진균 활성을 가진 탄산칼슘 형성세균의 분리와 특성)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.287-293
    • /
    • 2011
  • The purpose of this study was to isolate and characterize fungal deteriogens, which induce discoloration of the cement tunnel, and calcite forming bacteria (CFBs), which have antifungal activity against fungal deteriogens. Isolation of mold, bacteria and yeast was performed using several solid media and partially identified using internal transcribed spacer (ITS); 5.8S rRNA gene sequencing and 16s rDNA sequencing. A total of 19 microbial strains were identified with the most widely distributed fungal strain being Cladospirum sphaerospermum. In addition, five bacteria derived from the tunnel were identified as CFBs. Amongst the latter, Bacillus aryabhatti KNUC205 exhibited antifungal activity against Cladospirum sphaerospermum KNUC253 and Aspergillus niger KCTC6906 as concentrated filtered supernatants.