• 제목/요약/키워드: antifungal activity

검색결과 1,266건 처리시간 0.026초

Fungicidal Activity of Substance Purified from Marine Fungus Metabolites against Pyricularia oryzae

  • Byun Hee-Guk;Kim Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제5권2호
    • /
    • pp.97-102
    • /
    • 2002
  • Pyricularia oryzae (P. oryzae), the cause of rice blast, is one of the most important fungal pathogens of rice. Seventy strains of marine fungi were isolated from marine algae, and it was measured antifungal activity against P. oryzae. Metabolites of marine fungus A-248 which isolated from marine algae showed strong antifungal activity against P. oryzae. The antifungal substance from the metabolites of marine fungus A-248 was extracted with ethylacetate, and then purified by preparative TLC and reverse-phase HPLC. The minimum inhibitory concentration (MIC) value was $0.18\mu g/mL$ for the antifungal activity of the substance purified from A-248 metabolites. The purified substance was similar to antifungal activity of rhizoxin, which is a commercial antifungal agent.

전신성 캔디다증에 대한 산사자 추출물과 Fluconazole의 병용요법에 의한 항진균 상승효과 (Synergistic Antifungal Activity against Disseminated Candidiasis by Combination Therapy of Crataegi Fructus Extract and Fluconazole)

  • 한용문
    • 약학회지
    • /
    • 제59권6호
    • /
    • pp.259-265
    • /
    • 2015
  • In recent, there are increasing reports about pharmacological activities of Crataegi Fructus which has been used for many centuries as medicinal and food sources in East Asia. However, its antifungal efficacy needs to be investigated. Thus, in the current study, we determined synergistic antifungal activity of the Crataegi Fructus extract (CFE) when combined with fluconazole (FLC) against disseminated candidiasis due to Candida albicans. This fungus is one of the most problematic fungal pathogens. Data resulting from a microdilution susceptibility test showed that CFE had a dose-dependent antifungal activity. When the extract was combined with FLC, the activity was synergistic. For example, the antifungal activity by the combination of CFE at $20{\mu}g/ml$ plus FLC at $0.1{\mu}g/ml$ was 4 times more effective than antifungal activity by FLC alone at the same concentration (P<0.05). In the murine model of disseminated candidiasis, the combination therapy potentiated resistance of mice, resulting in 80% of C. albicans-infected animals surviving the entire period of 40 days observation, whereas mice given CFE alone or FLC alone all died with 17 and 23 days, respectively, although they survived longer than the untreated control animals (P<0.05). The CFE's antifungal activity seemed to be related to the blockage of hyphal production of C. albicans yeast cells. In summary, CFE has a synergistic antifungal activity, which can be produced by combining CFE with FLC. Thus, our data strongly indicate that CFE may be a potential candidate as an antifungal agent for combination therapy.

Chemical Constituents of the Fruiting Bodies of Clitocybe nebularis and Their Antifungal Activity

  • Kim, Young-Sook;Lee, In-Kyoung;Seok, Soon-Ja;Yun, Bong-Sik
    • Mycobiology
    • /
    • 제36권2호
    • /
    • pp.110-113
    • /
    • 2008
  • During a continuing search for antimicrobial substances from Korean native wild mushroom extracts, we found that the methanolic extract of the fruiting body of Clitocybe nebularis exhibited mild antifungal activity against pathogenic fungi. Therefore we evaluated the antifungal substances and other chemical components of the fruiting body of Clitocybe nebularis, which led to the isolation of nebularine, phenylacetic acid, purine, uridine, adenine, uracil, benzoic acid, and mannitol. Nebularine showed mild antifungal activity against Magnaphorthe grisea and Trichophyton mentagrophytes, and phenylacetic acid potently inhibited the growth of Pythium ultium and displayed moderate antifungal activity against Magnaphorthe grisea, Botrytis cinerea, and Trichophyton mentagrophytes. The other isolated compounds showed no antimicrobial activity.

Studies on Biological Activity of Wood Extractives(XIV) - Antifungal activity of isoflavonoids -

  • Park, Youngki;Lee, Sung-Suk;Lee, Hak-Ju;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권3호
    • /
    • pp.70-76
    • /
    • 2003
  • Five isoflavonoids, biochanin A-7-O-β-D-xylopyranosyl-(1⟶6)-β-D-gluco- pyranoside (1), (-)-maackiain (2), calycosin (3), trifolirhizin (4) and genistein (5), were tested for antifungal activity against nine fungi. These compounds were isolated from the wood (compound 1 and 2) and from the bark (compound 3, 4 and 5) of S. japonica. According to the results of antifungal activity test, (-)-maackiain was evaluated as the best antifungal compound among the isolated compounds. In this regard, it could be mentioned that high antifungal activity of S. japonica wood extracts was originated from (-)-maackiain.

Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity

  • Park, Gwee-Kyo;Lim, Jong-Hui;Kim, Sang-Dal;Shim, Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.326-330
    • /
    • 2012
  • Antifungal metabolites were isolated from a culture of Pseudomonas aurantiaca IB5-10. Chemical structures of the metabolites were elucidated as phenazine-1-carboxylic acid (PCA; 1), 2-hydroxyphenazine (2-OH-PHZ; 2), and cyclo-(L-Pro-L-Val; 3), respectively, based on spectroscopic methods. Among them, 3 was isolated for the first time from this strain. The antifungal activities of 1-3 were evaluated against a variety of plant pathogens. To the best of our knowledge, the antifungal activities of 3 against plant fungal pathogens have been evaluated for the first time in this work. PCA (1) showed the most potent antifungal activities against Phytophthora capsici, Rhizoctonia solani AG-1(IA), and Pythium ultimum with MICs (${\mu}g/ml$) of less than 1.0, 1.3, and 2.0, respectively. On the other hand, 2-OH-PHZ (2) showed potent antifungal activity against R. solani AG-1(IA) with the MIC (${\mu}g/ml$) of 2.0, whereas it showed moderate antifungal activity against P. ultimum with the MIC (${\mu}g/ml$) of 50.0. In addition, 3 showed antifungal activity against only R. solani AG-1(IA).

Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

  • Lee, Seung-Bae
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti-fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from $62.5{\mu}g/mL$ to $125{\mu}g/mL$ for BV and from $15.63{\mu}g/mL$ to $62.5{\mu}g/mL$ for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

Isolation of Bacillus amyloliquefaciens Strains with Antifungal Activities from Meju

  • Lee, Hwang-A;Kim, Jeong-Hwan
    • Preventive Nutrition and Food Science
    • /
    • 제17권1호
    • /
    • pp.64-70
    • /
    • 2012
  • Bacilli with fibrinolytic activities were isolated from traditionally-prepared Meju and some of these strains showed strong antifungal activities. One isolate, MJ1-4, showed the strongest antifungal activity. MJ1-4 and other isolates were identified as B. amyloliquefaciens strains by recA gene sequencing and RAPD-PCR results. B. amyloliqufaciens MJ1-4 efficiently inhibited an Aspergillus spp.-producing aflatoxin B1 ($AFB_1$) and a Penicillium spp.-producing ochratoxin (OTA) in addition to other fungi. Antifungal activity of B. amyloliquefaciens MJ1-4 culture reached its maximum (40 AU/mg protein) in LB or TSB medium around 48 hr at $37^{\circ}C$. Antifungal activity of the concentrated culture supernatant was not decreased significantly by protease treatments, implying that the antifungal substance might not be a simple peptide or protein. Considering its antifungal and fibrinolytic activities together, B. amyloliquefaciens MJ1-4 can serve as a starter for fermented soyfoods such as Cheonggukjang and Doenjang.

Structure-Antifungel Activity Relationships of Cecropin A Hybrid Peptides against Trichoderma sp.

  • Shin, Song-Yub;Lee, Dong-Gun;Lee, Sung-Gu;Kim, Kil-Lyong;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.21-24
    • /
    • 1997
  • The hybrid peptides, CA-ME, CA-MA and CA-BO, with the N-terminal sequence 1-8 of cecropin A and the N-terminal sequences 1-12 of melittin, magainin 2 and bombinin, respectively, have more improved antibacterial activities. CA-MA was found to have stronger antifungal activity against Trichoderma sp than other hybrid peptides and their parental peptides. In order to elucidate the relationships between the peptide structure and antifungal activity, several analogues of CA-MA or CA-BO were also designed and synthesized by the solid phase method. An tifungal activity was measured against T. reesei and T. viride, and hemolytic activity was measured by a solution method against human red blood cells. The residue 16 of CA-MA, Ser, was found to be important for antifungal activity. When the residue was substituted with Leu, showed powerful antifungal activity was dramatically decreased. CA-MA, P1, P4 and P5 designed in this study showed powerful antifungal activity against T. reesei and T. viride with low hemolytic activity against human red blood cells. These hybrid peptides will be potentially useful model to further design peptides with powerful antifungal activity for the effective therepy of fungal infection and understand the mechanisms of antifungal actions of hybrid peptides.

  • PDF

Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents

  • Jung, Jin A;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2020
  • FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.