DOI QR코드

DOI QR Code

Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity

  • Received : 2011.06.23
  • Accepted : 2011.11.23
  • Published : 2012.03.28

Abstract

Antifungal metabolites were isolated from a culture of Pseudomonas aurantiaca IB5-10. Chemical structures of the metabolites were elucidated as phenazine-1-carboxylic acid (PCA; 1), 2-hydroxyphenazine (2-OH-PHZ; 2), and cyclo-(L-Pro-L-Val; 3), respectively, based on spectroscopic methods. Among them, 3 was isolated for the first time from this strain. The antifungal activities of 1-3 were evaluated against a variety of plant pathogens. To the best of our knowledge, the antifungal activities of 3 against plant fungal pathogens have been evaluated for the first time in this work. PCA (1) showed the most potent antifungal activities against Phytophthora capsici, Rhizoctonia solani AG-1(IA), and Pythium ultimum with MICs (${\mu}g/ml$) of less than 1.0, 1.3, and 2.0, respectively. On the other hand, 2-OH-PHZ (2) showed potent antifungal activity against R. solani AG-1(IA) with the MIC (${\mu}g/ml$) of 2.0, whereas it showed moderate antifungal activity against P. ultimum with the MIC (${\mu}g/ml$) of 50.0. In addition, 3 showed antifungal activity against only R. solani AG-1(IA).

Keywords

References

  1. Abken, H. J., M. Tietze, J. Brodersen, S. Baumer, U. Beifuss, and U. Deppenmeier. 1998. Isolation and characterization of methanophenazine and function of phenazines in membranebound electron transport of Methanosarcina mazei Go1. J. Bacteriol. 180: 2027-2032.
  2. Feklistova, N. I. and N. P. Maksimova. 2008. Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77: 176-180. https://doi.org/10.1134/S0026261708020094
  3. Kumar, R. S., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, O. Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
  4. Kuninaga, S. and R. Yokosawa. 1982. DNA base sequence homology in Rhizoctonia solani Kuhn I. Genetic relatedness within anastomosis group 1. Ann. Phytopath. Soc. Japan 48: 659-667. https://doi.org/10.3186/jjphytopath.48.659
  5. Lee, J. Y., S. S. Moon, and B. K. Hwang. 2003. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest. Manag. Sci. 59: 872-882. https://doi.org/10.1002/ps.688
  6. Levitch, M. E. and P. Rietz. 1966. The isolation and characterization of 2-hydroxyphenazine from Pseudomonas aureofaciens. Biochemistry 5: 689-692. https://doi.org/10.1021/bi00866a040
  7. Li, H., B. C. Lee, T. S. Kim, K. S. Bae, J. Hong, S. H. Choi, et al. 2008. Bioactive cyclic dipeptides from a marine sponge-associated bacterium, Psychrobacter sp. Biomol. Ther. 16: 356-363. https://doi.org/10.4062/biomolther.2008.16.4.356
  8. Lim, J. H., J. G. Kim, and S. D. Kim. 2008. Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plants. Kor. J. Microbiol. Biotechnol. 36: 268-275.
  9. Liu, H., Y. He, H. Jiang, H. Peng, X. Huang, X. Zhang, L. S. Thomashow, and Y. Xu. 2007. Characterization of a Phenazineproducing strain Pseudomonas chlororaphis GP72 with broadspectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 54: 302-306. https://doi.org/10.1007/s00284-006-0444-4
  10. Liu, H. M., X. H. Zhang, X. Q. Huang, C. X. Cao, and Y. Q. Xu. 2008. Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis. Talanta 76: 276-281. https://doi.org/10.1016/j.talanta.2008.02.034
  11. Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu. Rev. Phytopathol. 25: 125-143. https://doi.org/10.1146/annurev.py.25.090187.001013
  12. Samina, M., D. N. Baig, F. Jamil, B. Weselowski, and G. Lazarovits. 2009. Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J. Microbiol. Biotechnol. 19: 1688-1694.
  13. Tamura, S., A. Suzuki, Y. Aoki, and N. Otake. 1964. Isolation of several diketopiperazines from peptone. Agric. Biol. Chem. 28: 650-652. https://doi.org/10.1271/bbb1961.28.650
  14. Tezuka, Y., Q. Huang, T. Kikuchi, A. Nishi, and K. Tubaki. 1994. Studies on the metabolites of mycoparasitic fungi. I. Metabolites of Cladobotryum varium. Chem. Pharm. Bull. 42: 2612-2617. https://doi.org/10.1248/cpb.42.2612

Cited by

  1. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF LOMOFUNGIN INSTREPTOMYCES LOMONDENSIS vol.36, pp.15, 2013, https://doi.org/10.1080/10826076.2012.712930
  2. A comparative study of antimicrobial properties of cyclo(l-Pro- l-Asp) with its 2-ketopiperazine analog vol.23, pp.5, 2012, https://doi.org/10.1007/s00044-013-0836-5
  3. Reaction Kinetics for the Biocatalytic Conversion of Phenazine-1-Carboxylic Acid to 2-Hydroxyphenazine vol.9, pp.6, 2012, https://doi.org/10.1371/journal.pone.0098537
  4. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex vol.5, pp.None, 2015, https://doi.org/10.1038/srep17190
  5. A genetic screen in combination with biochemical analysis in Saccharomyces cerevisiae indicates that phenazine-1-carboxylic acid is harmful to vesicular trafficking and autophagy vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-01452-6
  6. Metabolic engineering strategies for enhanced shikimate biosynthesis: current scenario and future developments vol.102, pp.18, 2012, https://doi.org/10.1007/s00253-018-9222-z
  7. Adsorption/desorption characteristics, separation and purification of phenazine‐1‐carboxylic acid from fermentation extract by macroporous adsorbing resins vol.93, pp.11, 2012, https://doi.org/10.1002/jctb.5673
  8. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-75203-5