• Title/Summary/Keyword: antidepressant activity

Search Result 61, Processing Time 0.025 seconds

Nefazodone and Associated Perceptual Disturbance : A Report of Four Cases (Nefazodons투여 후 지각이상을 보인 환자 4례)

  • Kim, Ji-Yun;Song, Hyoung-Seok;Cho, Bang-Hyun;Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.2
    • /
    • pp.259-263
    • /
    • 1999
  • Nefazodone, a newer antidepressant is a phenylpiperazine derivative that inhibits the reuptake of both norepinephrine and serotonin, and antagonizes $5-HT_{2A}$ and ${\alpha}_1$ adrenergic receptors. Compared with SSRIs, nefazodone caused the fewer activating symptoms, adverse gastrointestinal effects(nausea, diarrhea, anorexia) and adverse effects of sexual function, but is associated with the more dizziness, dry mouth, constipation, visual disturbances and confusion. We report on 4 cases of visual disturbances and hallucinations in patients taking nefazodone. It is not certain what mechanisms mediated these side effects, but three mechanisms are possible. 1) Nefazodone, as a 5-HT2 antagonist, might induce visual disturbances. 2) mCPP, metabolite of nefazodone might contribute to the hallucination through action on 5-HT receptor. 3) Dopaminergic enhancing activity of nefazodone might cause hallucination. These case report raises the possibility that dose-related perceptual disturbances may exist with nefazodone. The fact emphasizes the need to pay close attention to all possible drug interactions, particularly in patients treated with multiple psychoactive agents, older patients, and patients with decreased hepatic function.

  • PDF

Stereoselective Bioreduction of Ethyl 3-Oxo-3-(2-Thienyl) Propanoate Using the Short-Chain Dehydrogenase/Reductase ChKRED12

  • Ren, Zhi-Qiang;Liu, Yan;Pei, Xiao-Qiong;Wu, Zhong-Liu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1769-1776
    • /
    • 2019
  • Ethyl (S)-3-hydroxy-3-(2-thienyl) propanoate ((S)-HEES) acts as a key chiral intermediate for the blockbuster antidepressant drug duloxetine, which can be achieved via the stereoselective bioreduction of ethyl 3-oxo-3-(2-thienyl) propanoate (KEES) that contains a 3-oxoacyl structure. The sequences of the short-chain dehydrogenase/reductases from Chryseobacterium sp. CA49 were analyzed, and the putative 3-oxoacyl-acyl-carrier-protein reductase, ChKRED12, was able to stereoselectively catalyze the NADPH-dependent reduction to produce (S)-HEES. The reductase activity of ChKRED12 towards other substrates with 3-oxoacyl structure were confirmed with excellent stereoselectivity (>99% enantiomeric excess) in most cases. When coupled with a cofactor recycling system using glucose dehydrogenase, the ChKRED12 was able to catalyze the complete conversion of 100 g/l KEES within 12 h, yielding the enantiopure product with >99% ee, showing a remarkable potential to produce (S)-HEES.

Effect of Serotonin Uptake Inhibitors on Serotonin Metabolism in the Hypothalamus of Freely Moving Rats

  • Song, Yun-Seob;Yoon, Se-Na;Jung, Dong-Sik;Yoo, Sang-Hee;Ryu, Hyong-Kyun;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.439-444
    • /
    • 2000
  • Tricyclic antidepressant clomipramine or selective serotonin reuptake inhibitors (SSRIs) have been commonly used for the treatment of premature ejaculation. In the present study, we analyzed the concentrations of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) in the medial preoptic area (MPOA) of the hypothalamus by awakening animal microdialysis following administration of clomipramine and various SSRIs. We then compared the serotonin metabolism and clinical effects of clomipramine and SSRIs on premature ejaculation. Basal extracellular serotonin level in the MPOA was higher than other brain regions and it was significantly increased by clomipramine and the SSRIs. The rank order of the concentration of serotonin at the MPOA was clomipramine, sertraline, paroxetine and fluoxetine and the concentrations of 5-HIAA was vice versa. The changes in serotonin concentration at the MPOA appeared closely associated with the clinical effects of these drugs on premature ejaculation. These results suggest that the serotonergic neuronal activity in the MPOA may have an selective inhibitory influence on ejaculation, and the effects of clomipramine and SSRIs on erectile function are mainly mediated by MPOA of the hypothalamus.

  • PDF

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Facile Synthesis and Radioiodine Labeling of Hypericin

  • Kim, Sang-Wook;Park, Jeong-Hoon;Yang, Seung-Dae;Hur, Min-Goo;Kim, Yu-Seok;Chai, Jong-Seo;Kim, Young-Soon;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1147-1150
    • /
    • 2004
  • Hypericin (1,3,4,6,8,13-hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione), an antidepressant which is also known to be a potent protein kinase C (PKC) inhibitor was synthesized as a precursor for radioiodine labeling via two step reactions. Malignant glioma cells express higher PKC activity compared to untransformed glial cell. Here we report the synthesis and radioiodine labeling of hypericin as a potential brain tumor imaging radiopharmaceutical. The reference compound, 2-iodohypericin, and its radiolabelled analogues, 2-[$^{123}I$]iodohypericin and 2-[$^{124}I$]iodohypericin have been prepared by the reaction of hypericin with NaI or [$^{123}I$]NaI or [$^{124}I$]NaI. The labeling yield was 60-65% for each analogue and the optimal reaction time was 10 min. The purification and isolation of the labelled products were achieved by a reversed-phase HPLC.

Ameliorating Effect of Taraxacum platycarpum Extract in the Scopolamine-induced Cholinergic Blockade Mouse Model (Scopolamine으로 유도된 콜린성 신경계 차단 동물모델에서 포공영(Taraxacum platycarpum) 추출물의 기억력 개선효과)

  • Kwon, Yubeen;Park, Ho Jae;Shin, Bum Young;Ryu, Jong Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • Taraxacum platycarpum H. Dahl. (Compositae) has been used as an anti-inflammatory or anti-cancer agent in the clinic. Although its antidepressant effect has been reported, however, its cognitive function is not investigated until yet. In the present study, we investigated whether the water extract of T. platycarpum (WETP) could improve cognitive function in cholinergic blockade-induced amnesia mouse model using the passive avoidance or Y-maze task. WETP (12.5, 25 or 50 mg/kg) significantly ameliorated the scopolamine-induced cognitive impairment both in the passive avoidance test and the Y-maze test. In addition, WETP significantly inhibited acetylcholinesterase (AChE) activity measured by an ex vivo study using the mouse whole brain. These results suggest that WETP alleviates the cognitive dysfunction caused by the cholinergic blockade, in part, via AChE inhibition, and that it may be a useful for treating cognitive dysfunction.

Chronic administration of ketamine ameliorates the anxiety- and aggressive-like behavior in adolescent mice induced by neonatal maternal separation

  • Shin, Sang Yep;Baek, Nam Jun;Han, Seung Ho;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.81-87
    • /
    • 2019
  • Ketamine has long been used as an anesthetic agent. However, ketamine use is associated with numerous side effects, including flashbacks, amnesia, delirium, and aggressive or violent behavior. Ketamine has also been abused as a cocktail with ecstasy, cocaine, and methamphetamine. Several studies have investigated therapeutic applications of ketamine, demonstrating its antidepressant and anxiolytic effects in both humans and rodents. We recently reported that neonatal maternal separation causes enhanced anxiety- and aggressive-like behaviors in adolescent. In the present study, we evaluated how acute and chronic ketamine administration affected the behavioral consequences of neonatal maternal separation in adolescent mice. Litters were separated from dams for 4 hours per day for 19 days beginning after weaning. Upon reaching adolescence (post-natal day 35-49), mice were acutely (single injection) or chronically (7 daily injections) treated with a sub-anesthetic dose (15 mg/kg) of ketamine. At least 1 h after administration of ketamine, mice were subjected to open-field, elevated-plus maze, and resident-intruder tests. We found that acute ketamine treatment reduced locomotor activity. In contrast, chronic ketamine treatment decreased anxiety, as evidenced by increased time spent on open arms in the elevated-plus maze, and remarkably reduced the number and duration of attacks. In conclusion, the present study suggests that ketamine has potential for the treatment of anxiety and aggressive or violent behaviors.

Chronic Treatment of Fluoxetine Increases Expression of NCAM140 in the Rat Hippocampus (장기간 플루세틴 처리에 의한 흰쥐 해마에서의 NCAM140 유전자 발현의 증가)

  • Choi, Mi Ran;Chai, Young Gyu;Jung, Kyoung Hwa;Baik, Seung Youn;Kim, Seok Hyeon;Roh, Sungwon;Choi, Joonho;Lee, Jun-Seok;Choi, Ihn Geun;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • Objectives : Most of the mechanisms reported for antidepressant drugs are the enhancement of neurite outgrowth and neuronal survival in the rat hippocampus. Neural cell adhesion molecule 140(NCAM140) has been implicated as having a role in cell-cell adhesion, neurite outgrowth, and synaptic plasticity. In this report, we have performed to elucidate a correlation among chronic antidepressant treatments, NCAM140 expression, and activation of phosphorylated cyclicAMP responsive element binding protein(pCREB) which is a downstream molecule of NCAM140-mediated intracellular signaling pathway in the rat hippocampus. Methods : Fluoxetine(10mg/kg) was injected acutely(daily injection for 5days) or chronically(daily injection for 14days) in adult rats. RNA and protein were extracted from the rat hippocampus, respectively. Real-time RT-PCR was performed to analyze the expression pattern of NCAM140 gene and western blot analyses for the activation of the phosphorylation ratio of CREB. Results : Chronic fluoxetine treatments increased NCAM140 expression 1.3 times higher than control in rat hippocampus. pCREB immunoreactivity in the rat hippocampus with chronic fluoxetine treatment was increased 4.0 times higher than that of control. Conclusion : Chronic fluoxetine treatment increased NCAM140 expression and pCREB activity in the rat hippocampus. Our data suggest that NCAM140 and pCREB may play a role in the clinical efficacy of antidepressants promoting the neurite outgrowth and neuronal survival.

  • PDF

Clinical Implication of Loudness Dependence of Auditory Evoked Potential (LDAEP) in Psychiatic Illness (정신질환에서 Loudness Dependence of Auditory Evoked Potential (LDAEP)의 임상적 의미)

  • Lee, Seung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • The loudness dependence of the auditory evoked potential (LDAEP) has been proposed as a valid biomarker of central serotoninergic activity in humans. The specificity and sensitivity of the LDAEP to changes in serotonergic neurotransmission have recently been explored in many studies about pharmacology and genetics. The majority of evidence for an association between the LDAEP and serotonin activity has come from animal studies. Genetic association studies with the LDAEP have provided conflicting reports with additional evidence outlining sensitivity to other neurotransmitter systems including the dopamine and glutamatergic systems. The LDAEP has been revealed to reflect the pathophysiology of various psychiatric illnesses. There is supporting evidence that major psychiatric disorders have differential LDAEP activities. Overall, the LDAEP shows strong evidence as a potential predictor of antidepressant treatment response. It need to be explored whether the LDAEP could be a biological marker of various psychiatric diseases and treatment prediction of antidepressants and serotonin related drugs.

Experimental Study on the Antidepressant Effect of Ginseng Radix Alba and Cyperi Rhizoma (인삼(人蔘)과 향부자(香附子)의 항우울효과(抗憂鬱效果)에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, In-Jae
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.1
    • /
    • pp.101-119
    • /
    • 2004
  • Ginseng Radix Alba and Cyperi Rhizoma were investigated for their anti-depressant effects. For this purpose, forced-swimming test, tail suspension test, hot plate test, reserpine-induced hypothermia, aggressive behavior test were performed. In addition, the brain content of 5-hydroxyindoleacetic acid(a metabolite of serotonin), the monoamine oxidase activity, anticonvulsant effect, sleep enhancement effect were determined. The results are as follows: In the forced swimming test, Ginseng Radix diminished the duration of immobility by 45.5% compared to the control group, while Cyperi Rhizoma showed weaker effect (12.4% reduction) at 2g/kg. In the tail suspension test, the effect of Ginseng Radix(43.7% reduction) are also better than that of Cyperi Rhizoma(15.6% reduction) at 2g/kg. In the hot plate test, Ginseng Radix showed no difference as compared to control, while Cyperi Rhizoma increased the jump latency time by about 25% after administration for 10 days. In the reserpine-induced hypothermia test, both drugs slowly dropped the body temperature compared to the control group, especially the rate of hypothermia of Ginseng Radix was 24.0% at 1g/kg. In the aggressive behavior test, both drugs delayed the onset time, decreased the duration and frequency, of which effects were better in Cyperi Rhizoma. The content of 5-hydroxyindoleacetic acid in mice brain was slightly increased in Ginseng Radix, while Cyperi Rhizoma increased its level almost to the control group. Both drugs inhibited the monoamine oxidase activity in a dose-dependent manner, but the effect(51.2%) of Cyperi Rhizoma was more potent than the effect(11.8%) of Ginseng Radix. In the pentobarbital-induced sleep test, Cyperi Rhizoma exhibited no significant difference against the control group, while Ginseng Radix showed about two-fold enhancement at 2g/kg. The anticonvulsant effect of both drugs delayed the onset time, shortened the duration of convulsion and diminished the lethality, but Ginseng Radix were better than Cyperi Rhizoma.

  • PDF