Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.141

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression  

Meng, Qing (Queen Mary Institute, School of Medicine, Nanchang University)
Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University)
Oh, Seikwan (Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University)
Lee, Yong-Moon (Department of Pharmacy, College of Pharmacy, Chungbuk National University)
Hu, Zhenzhen (Department of Pathophysiology, College of Medicine, Nanchang University)
Oh, Ki-Wan (Department of Pharmacy, College of Pharmacy, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 425-431 More about this Journal
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.
Keywords
CART peptide; Addiction; Psychostimulant; Depression;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Turnbull, A. V. and Rivier, C. (1997) Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc. Soc. Exp. Biol. Med. 215, 1-10.   DOI
2 Kupfer, D. J., Frank, E. and Phillips, M. L. (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045-1055.   DOI
3 Lecca, S., Meye, F. J. and Mameli, M. (2014) The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur. J. Neurosci. 39, 1170-1178.   DOI
4 Lee, J. S. and Lee, H. S. (2014) Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: light microscopic study. Brain Res. 1560, 46-59.   DOI
5 Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., Malinow, R., Yates, J. R., 3rd and Hu, H. (2013a) betaCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016-1020.   DOI
6 Li, S. X., Yan, S. Y., Bao, Y. P., Lian, Z., Qu, Z., Wu, Y.P. and Liu, Z. M. (2013b) Depression and alterations in hypothalamic-pituitaryadrenal and hypothalamic-pituitary-thyroid axis function in male abstinent methamphetamine abusers. Hum. Psychopharmacol. 28, 477-483.   DOI
7 Liu, X. B. and Murray, K. D. (2012) Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: location, location, location. Epilepsia 53 Suppl 1, 45-52.
8 Ma, Z., Pearson, E. and Tao, R. (2007) CART peptides increase 5-hydroxytryptamine in the dorsal raphe and nucleus accumbens of freely behaving rats. Neurosci. Lett. 417, 303-307.   DOI
9 Mao, P. (2011) Potential antidepressant role of neurotransmitter CART: implications for mental disorders. Depress. Res. Treat. 2011, 762139.
10 Jaworski, J. N., Kozel, M. A., Philpot, K. B. and Kuhar, M. J. (2003a) Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity. J. Pharmacol. Exp. Ther. 307, 1038-1044.   DOI
11 Jaworski, J. N., Vicentic, A., Hunter, R. G., Kimmel, H. L. and Kuhar, M. J. (2003b) CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life Sci. 73, 741-747.   DOI
12 Job, M. O., McNamara, I. M. and Kuhar, M. J. (2011) cart peptides regulate psychostimulants and may be endogenous antidepressants. Curr. Neuropharmacol. 9, 12-16.   DOI
13 Jean, A., Conductier, G., Manrique, C., Bouras, C., Berta, P., Hen, R., Charnay, Y., Bockaert, J. and Compan, V. (2007) Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 104, 16335-16340.   DOI
14 Jean, A., Laurent, L., Bockaert, J., Charnay, Y., Dusticier, N., Nieoullon, A., Barrot, M., Neve, R. and Compan, V. (2012) The nucleus accumbens 5-HTR(4)-CART pathway ties anorexia to hyperactivity. Transl. Psychiatry 2, e203.   DOI
15 Jiao, D., Liu, Y., Li, X., Liu, J. and Zhao, M. (2015) The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci. 9, 162.
16 Knapp, D. J., Overstreet, D. H. and Breese, G. R. (2007) Baclofen blocks expression and sensitization of anxiety-like behavior in an animal model of repeated stress and ethanol withdrawal. Alcohol. Clin. Exp. Res. 31, 582-595.
17 Koob, G. F. (2008a) Hedonic homeostatic dysregulation as a driver of drug-seeking behavior. Drug Discov. Today Dis. Models 5, 207-215.   DOI
18 Koob, G. F. (2008b) A role for brain stress systems in addiction. Neuron 59, 11-34.   DOI
19 Nagelova, V., Pirnik, Z., Zelezna, B. and Maletinska, L. (2014) CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res. 1547, 16-24.   DOI
20 Moffett, M. C., Song, J. and Kuhar, M. J. (2011) CART peptide inhibits locomotor activity induced by simultaneous stimulation of D1 and D2 receptors, but not by stimulation of individual dopamine receptors. Synapse 65, 1-7.   DOI
21 Padgett, C. L., Lalive, A. L., Tan, K. R., Terunuma, M., Munoz, M. B., Pangalos, M. N., Martinez-Hernandez, J., Watanabe, M., Moss, S. J., Lujan, R., Luscher, C. and Slesinger, P. A. (2012) Methamphetamine-evoked depression of GABA(B) receptor signaling in GABAneurons of the VTA. Neuron 73, 978-989.   DOI
22 Pae, C. U., Lee, C. and Paik, I. H. (2007) Therapeutic implication of cocaine-and amphetamine-regulated transcript (CART) in the treatment of depression. Med. Hypotheses 69, 132-135.   DOI
23 Kulik, A., Vida, I., Lujan, R., Haas, C. A., Lopez-Bendito, G., Shigemoto, R. and Frotscher, M. (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J. Neurosci. 23, 11026-11035.   DOI
24 Koob, G. F. and Le Moal, M. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278, 52-58.   DOI
25 Koob, G. F., Ahmed, S. H., Boutrel, B., Chen, S. A., Kenny, P. J., Markou, A., O'Dell, L. E., Parsons, L. H. and Sanna, P. P. (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci. Biobehav. Rev. 27, 739-749.   DOI
26 Parsons, L. H., Koob, G. F. and Weiss, F. (1996) Extracellular serotonin is decreased in the nucleus accumbens during withdrawal from cocaine self-administration. Behav. Brain Res. 73, 225-228.
27 Koob, G. F., Sanna, P. P. and Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467-476.   DOI
28 Mao, P. Z., Meshul, C. K., Thuillier, P., Goldberg, N. R. S. and Reddy, P. H. (2012) CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria. PLoS ONE 7, e29343.   DOI
29 Kuhar, M. J. and Yoho, L. L. (1999) CART peptide analysis by Western blotting. Synapse 33, 163-171.   DOI
30 Kuhar, M. J., Adams, L. D., Hunter, R. G., Vechia, S. D. and Smith, Y. (2000) CART peptides. Regul. Pept. 89, 1-6.   DOI
31 Dandekar, M. P., Singru, P. S., Kokare, D. M. and Subhedar, N. K. (2009) Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology 34, 1288-1300.   DOI
32 Douglass, J. and Daoud, S. (1996) Characterization of the human cDNA and genomic DNA encoding CART: a cocaine- and amphetamine-regulated transcript. Gene 169, 241-245.   DOI
33 Douglass, J., McKinzie, A. A. and Couceyro, P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471-2481.   DOI
34 Esteban, S., Moranta, D., Sastre-Coll, A., Miralles, A. and Garcia-Sevilla, J. A. (2002) Withdrawal from chronic ethanol increases the sensitivity of presynaptic 5-HT(1A) receptors modulating serotonin and dopamine synthesis in rat brain in vivo. Neurosci. Lett. 326, 121-124.   DOI
35 Xiong, L., Meng, Q., Sun, X., Lu, X., Fu, Q., Peng, Q., Yang, J., Oh, K. W. and Hu, Z. Z. (2018) CART peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient overexpression of alpha-Ca2+/Calmodulin-dependent Protein Kinase II. J Neurochem. doi: 10.1111/jnc.14289.   DOI
36 Hubert, G. W., Jones, D. C., Moffett, M. C., Rogge, G. and Kuhar, M. J. (2008) CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem. Pharmacol. 75, 57-62.   DOI
37 Wiehager, S., Beiderbeck, D. I., Gruber, S. H., El-Khoury, A., Wamsteeker, J., Neumann, I. D., Petersen, A. and Mathe, A. A. (2009) Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol. Dis. 34, 375-380.   DOI
38 Wu, B., Hu, S., Yang, M., Pan, H. and Zhu, S. (2006) CART peptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem. Biophys. Res. Commun. 347, 656-661.   DOI
39 Yang, Y., Cui, Y., Sang, K., Dong, Y., Ni, Z., Ma, S. and Hu, H. (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317-322.   DOI
40 Yoon, H. S., Adachi, N. and Kunugi, H. (2014) Microinjection of cocaine-and amphetamine-regulated transcript 55-102 peptide into the nucleus accumbens could modulate anxiety-related behavior in rats. Neuropeptides 48, 319-325.   DOI
41 Yoon, H. S., Kim, S., Park, H. K. and Kim, J. H. (2007) Microinjection of CART peptide 55-102 into the nucleus accumbens blocks both the expression of behavioral sensitization and ERK phosphorylation by cocaine. Neuropharmacology 53, 344-351.   DOI
42 Peng, Q., Sun, X., Liu, Z., Yang, J., Oh, K. W. and Hu, Z. (2014) Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization. Neurochem. Int. 75, 105-111.   DOI
43 Yoon, H. S., Hattori, K., Sasayama, D. and Kunugi, H. (2018) Low cocaine- and amphetamine-regulated transcript (CART) peptide levels in human cerebrospinal fluid of major depressive disorder (MDD) patients. J. Affect. Disord. 232, 134-138.   DOI
44 Zuloaga, D. G., Jacobskind, J. S. and Raber, J. (2015) Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front. Neurosci. 9, 178.
45 Upadhya, M. A., Nakhate, K. T., Kokare, D. M., Singh, U., Singru, P. S. and Subhedar, N. K. (2012) CART peptide in the nucleus accumbens shell acts downstream to dopamine and mediates the reward and reinforcement actions of morphine. Neuropharmacology 62, 1823-1833.   DOI
46 Vrang, N., Larsen, P. J., Kristensen, P. and Tang-Christensen, M. (2000) Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 141, 794-801.   DOI
47 Peng, G. J., Tian, J. S., Gao, X. X., Zhou, Y. Z. and Qin, X. M. (2015) Research on the pathological mechanism and drug treatment mechanism of depression. Curr. Neuropharmacol. 13, 514-523.   DOI
48 Pin, J. P. and Bettler, B. (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540, 60-68.   DOI
49 Pompili, M., Serafini, G., Innamorati, M., Moller-Leimkuhler, A. M., Giupponi, G., Girardi, P., Tatarelli, R. and Lester, D. (2010) The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur. Arch. Psychiatry Clin. Neurosci. 260, 583-600.   DOI
50 Filip, M., Frankowska, M., Sadakierska-Chudy, A., Suder, A., Szumiec, L., Mierzejewski, P., Bienkowski, P., Przegalinski, E. and Cryan, J. F. (2015) GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88, 36-47.   DOI
51 Fu, Q., Zhou, X., Dong, Y., Huang, Y., Yang, J., Oh, K. W. and Hu, Z. (2016) Decreased caffeine-induced locomotor activity via microinjection of CART peptide into the nucleus accumbens is linked to inhibition of the pCaMKIIa-D3R interaction. PLoS ONE 11, e0159104.   DOI
52 George, O., Ghozland, S., Azar, M. R., Cottone, P., Zorrilla, E. P., Parsons, L. H., O'Dell, L. E., Richardson, H. N. and Koob, G. F. (2007) CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc. Natl. Acad. Sci. U.S.A. 104, 17198-17203.   DOI
53 Graeff, F. G., Guimaraes, F. S., De Andrade, T. G. and Deakin, J. F. (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129-141.   DOI
54 Greenwell, T. N., Funk, C. K., Cottone, P., Richardson, H. N., Chen, S. A., Rice, K. C., Zorrilla, E. P. and Koob, G. F. (2009) Corticotropin-releasing factor-1 receptor antagonists decrease heroin selfadministration in long- but not short-access rats. Addict. Biol. 14, 130-143.   DOI
55 Herman, J. P., Ostrander, M. M., Mueller, N. K. and Figueiredo, H. (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201-1213.   DOI
56 Hu, Z., Oh, E. H., Chung, Y. B., Hong, J. T. and Oh, K. W. (2015) Predominant D1 receptors involvement in the over-expression of CART peptides after repeated cocaine administration. Korean J. Physiol. Pharmacol. 19, 89-97.   DOI
57 Cai, Z., Zhang, D., Ying, Y., Yan, M., Yang, J., Xu, F., Oh, K. and Hu, Z. (2014) Inhibitory modulation of CART peptides in accumbal neuron through decreasing interaction of CaMKIIalpha with dopamine D3 receptors. Brain Res. 1557, 101-110.   DOI
58 Avalos-Fuentes, A., Albarran-Bravo, S., Loya-Lopez, S., Cortes, H., Recillas-Morales, S., & Magana, J. J., et al. (2015) Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its ca(2+) dependent modulation by camkii and calmodulin in striatonigral projections of the rat. Neurobiology of Disease, 74, 336-346.   DOI
59 Bonci, A. and Williams, J. T. (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631-639.   DOI
60 Bonci, A. and Williams, J. T. (1997) Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796-803.   DOI
61 Carroll, B. J., Cassidy, F., Naftolowitz, D., Tatham, N. E., Wilson, W. H., Iranmanesh, A., Liu, P. Y. and Veldhuis, J. D. (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr. Scand. Suppl. (433), 90-103.
62 Chartoff, E. H. and Carlezon, W. A., Jr. (2014) Drug withdrawal conceptualized as a stressor. Behav. Pharmacol. 25, 473-492.
63 Dallvechia-Adams, S., Kuhar, M. J. and Smith, Y. (2002) Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: colocalization with gamma-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. J. Comp. Neurol. 448, 360-372.   DOI
64 Choudhary, A. G., Somalwar, A. R., Sagarkar, S., Rale, A., Sakharkar, A., Subhedar, N. K. and Kokare, D. M. (2018) CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior. Brain Struct. Funct. 223, 1313-1328.
65 Craige, C. P., Lewandowski, S., Kirby, L. G. and Unterwald, E. M. (2015) Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 93, 41-51.   DOI
66 Cui, Y., Yang, Y., Ni, Z., Dong, Y., Cai, G., Foncelle, A., Ma, S., Sang, K., Tang, S., Li, Y., Shen, Y., Berry, H., Wu, S. and Hu, H. (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323-327.   DOI
67 Addolorato, G., Leggio, L., Agabio, R., Colombo, G. and Gasbarrini, G. (2006) Baclofen: a new drug for the treatment of alcohol dependence. Int. J. Clin. Pract. 60, 1003-1008.   DOI
68 Anacker, C., Zunszain, P. A., Cattaneo, A., Carvalho, L. A., Garabedian, M. J., Thuret, S., Pariante, C. M. (2011) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry, 16(7), 738-750. doi: 10.1038/mp.2011.26.   DOI
69 Javitt, D. C., Schoepp, D., Kalivas, P. W., Volkow, N. D., Zarate, C., Merchant, K., Bear, M. F., Umbricht, D., Hajos, M., Potter, W. Z. and Lee, C. M. (2011) Translating glutamate: from pathophysiology to treatment. Sci. Transl. Med. 3, 102mr2.
70 Ruhe, H. G., Mason, N. S. and Schene, A. H. (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry 12, 331-359.   DOI
71 Shabel, S. J., Proulx, C. D., Piriz, J. and Malinow, R. (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494-1498.   DOI
72 Smith, S. M., Vaughan, J. M., Donaldson, C. J., Rivier, J., Li, C., Chen, A. and Vale, W. W. (2004) Cocaine- and amphetamine-regulated transcript activates the hypothalamic-pituitary-adrenal axis through a corticotropin-releasing factor receptor-dependent mechanism. Endocrinology 145, 5202-5209.   DOI
73 Specio, S. E., Wee, S., O'Dell, L. E., Boutrel, B., Zorrilla, E. P. and Koob, G. F. (2008) CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology 196, 473-482.   DOI
74 Spiess, J., Villarreal, J. and Vale, W. (1981) Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry 20, 1982-1988.   DOI
75 Stanek, L. M. (2006) Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 27, 2005-2011.   DOI
76 Stanley, S. A., Murphy, K. G., Bewick, G. A., Kong, W. M., Opacka-Juffry, J., Gardiner, J. V., Ghatei, M., Small, C. J. and Bloom, S. R. (2004) Regulation of rat pituitary cocaine- and amphetamineregulated transcript (CART) by CRH and glucocorticoids. Am. J. Physiol. Endocrinol. Metab. 287, E583-E590.   DOI
77 Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouebe, G., Deisseroth, K., Tye, K. M. and Luscher, C. (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173-1183.   DOI