• 제목/요약/키워드: anticancer therapeutics

Search Result 130, Processing Time 0.241 seconds

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

  • Han, Yong-Seok;Lee, Jun Hee;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.225-232
    • /
    • 2015
  • We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

In Vitro and In Vivo Anticancer Activity of Gimatecan against Hepatocellular Carcinoma

  • Zhao, Youna;Lau, Lit-Fui;Dai, Xiangrong;Li, Benjamin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권11호
    • /
    • pp.4853-4856
    • /
    • 2016
  • Objective: Gimatecan is a new camptothecin (CPT) analogue that inhibits tumor growth by targeting DNA topoisomerase I (TOP I) and introducing strong and persistent DNA cleavage. Anti-tumor activity has been demonstrated with a wide range of solid tumors in previous preclinical and clinical studies. Here, we investigated for the first time the effects of gimatecan on the proliferation of hepatocellular carcinoma (HCC) cells both in vitro and in vivo. Methods: Anticancer efficacy of gimatecan were evaluated in a panel of HCC cell lines and corresponding mouse xenograft models. Inhibition of cell proliferation was measured by CellTiter-Glo cell viability assay. In vivo, gimatecan and control preparations were orally administered every four days, for a total of four times. Tumor volume and body weights of the mice were measured twice weekly. Results: In vitro cytotoxicity evaluation showed that gimatecan inhibited the proliferation of a large panel of HCC cell lines in a dose dependent manner, with IC50 values ranging between 12.1~1085.0 nM. In vivo evaluation in mouse xenograft models showed significant antitumor effects of gimatecan at 0.8mg/kg and 0.4mg/kg as compared to the control group. Conclusion: This study suggested that gimatecan may have the potential to be used as a chemotherapeutic agent for the treatment of HCC.

새로운 백금착물 항암제 SKI 2053R의 토끼 최기형성시험 (Teratogenicity Study of SKI 2053R, a New Platinum Anticancer Agent, in Rabbits)

  • 김종춘;김갑호;박종일;김형진;정문구
    • Biomolecules & Therapeutics
    • /
    • 제7권3호
    • /
    • pp.292-299
    • /
    • 1999
  • SKI 2053 R, cis-Malonato [(4R, 5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane] platinum(II), is a newly developed antitumor platinum complex derived from cisplatin. Preclinical studies suggest that it may have greater antitumor activity and lower toxicity than cisplatin. Effects of test agent on general toxicity of does and embryonic development of Fl fetuses were investigated in rabbits. Sixty eight New Zealand white rabbits were distributed among three treated groups and a control group. SKI 2053R was administered intravenously to pregnant rabbits from days 6 to 18 of gestation at dose levels of 0, 0.67, 2.0, or 6.0 mg/kg/day. The pregnant does were subjected to the caesarean section on day 28 of gestation. No treatment-related changes in clinical signs, body weight, food consumption, and necropsy findings were observed in all groups. Fl fetuses showed no changes related to the treatment of SKI 2053R, except that an increase in the incidence of skeletal variations were observed at 6.0 mg/kg. There were no signs of material toxicity or embryotoxicity at 0.67 and 2.0 mg/kg. The results show that the administration of 6.0 mg/kg SKI 2053R induces skeletal variations in fetuses and that the no observed adverse effect levels(NOAELS) of SKI 2053R are considered to be over 6.0 mg/kg for does and 2.0 mg/kg for Fl fetuses in rabbits.

  • PDF

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • So Jin Sim;Jeong-Hoon Jang;Joon-Seok Choi;Kyung-Soo Chun
    • Biomolecules & Therapeutics
    • /
    • 제32권5호
    • /
    • pp.568-576
    • /
    • 2024
  • Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

in vitro Modulation of P-glycoprotein, MRP-1 and BCRP Expression by Mangiferin in Doxorubicin-Treated MCF-7 Cells

  • Louisa, Melva;Soediro, Tjahjani Mirawati;Suyatna, Frans Dhyanagiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1639-1642
    • /
    • 2014
  • The multidrug resistance phenotype is one of the major problems in development of cancer cell resistance to chemotherapy. Some natural compounds from medicinal plants have demonstrated promising capacity in enhancing anticancer effects in drug resistant cancer cells. We aimed to investigate whether mangiferin might have an ability to re-sensitize MCF-7 breast cancer cells previously treated with short-term doxorubicin in vitro, through the modulation of efflux transporters, P-glycoprotein (P-gp), MRP1 and BCRP. We exposed MCF-7 breast cancer cells pretreated with doxorubicin for 10 days to mangiferin (10, 25 or 50 ${\mu}M$) for 96 hours. Afterwards, we evaluated influence on cell viability and level of mRNA expression of P-gp, MRP1 and BCRP. Doxorubicin given in combination with mangiferin at low concentrations (10 and 25 ${\mu}M$) failed to give significant reduction in cell viability, while at the highest concentrations, the combination significantly reduced cell viability. The mRNA expression analysis of P-gp, MRP1 and BCRP showed that mangiferin had inhibitory effects on P-gp but no effects on MRP1 and BCRP. In conclusion, we suggest that mangiferin at high concentrations can be used as chemosensitizer for doxorubicin therapy. This effect might be attributed by inhibitory effects of mangiferin on P-glycoprotein expression.

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

  • ChoiPark, Won-HyungHyun-Do;Baek, Seung-Hwa;Chu, Jong-Phil;Kang, Mae-Hwa;Mi, Yu-Jing
    • Biomolecules & Therapeutics
    • /
    • 제16권2호
    • /
    • pp.87-94
    • /
    • 2008
  • In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells. The cells were cultured in various concentrations of CBD for 48 h and 25 ${\mu}$M of CBD for 6-36 h. The cells were observed to exhibit inhibitory effects of the cell viability in their growth, and then cytotoxicity was estimated. The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines. Also, to assess the membrane toxicity induced by CBD, we investigated lactate dehydrogenase (LDH) release. After treatment with various concentrations of CBD, LDH release rate of cancer cells was accelerated. On the other hand, in the induction of cell death, caspase-3, -8 and -9 activations were detected in cancer cells after treatment with various concentrations of CBD, and CBD effectively induced activity of caspase-3, -8 and -9 in A549 lung cancer cells, MDAMB-231 breast cancer cells and Renca kidney cells. Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 ${\mu}$M concentration.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

새로운 안트라사이클린계 항암제 DA-125의 생식독성연구: 토끼 최기형시험 (Reproductive Toxicity of DA-125, A New Anthracycline Anticancer Agent: Teratogenicity Study in Rabbits)

  • 정문구;김종춘;한상섭;노정구
    • Biomolecules & Therapeutics
    • /
    • 제3권1호
    • /
    • pp.47-53
    • /
    • 1995
  • DA-125, a new anthracycline antitumor antibiotic, was administered at dose levels of 0, 0.2, 0.6 and 1.8 mg/kg/day intravenously to pregnant New Zealand White rabbits from day 6 through 18 of gestation. The does were subjected to the caesarean section on day 28 of gestation. Effects of test agent on general toxicity of does and embryonic development of F1 fetuses were examined. At 1.8 mg/kg, the organ weight for ovary of does was significantly decreased. The decrease in the number of corpus lutea, implantations and litter size, and the increase in the rate of resorptions were also observed. In addition, various types of external, visceral and skeletal malformations occurred in fetuses at an incidence of 7.7, 7.7 and 20.6%, respectively. The results show that the no effect dose levels (NOELs) of DA-125 are 0.6 mg/kg/day for does and F1 fetuses.

  • PDF