DOI QR코드

DOI QR Code

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • Received : 2024.03.20
  • Accepted : 2024.04.22
  • Published : 2024.09.01

Abstract

Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program grant (No. 2020R1l1A3066367 to KSC; No. 2018R1D1A1A02050495 and 2021R1A2C1014399 to JSC) from the National Research Foundation (NRF) of the Republic of Korea.

References

  1. Alese, O. B., Wu, C., Chapin, W. J., Ulanja, M. B., Zheng-Lin, B., Amankwah, M. and Eads, J. (2023) Update on Emerging therapies for advanced colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book 43, e389574.
  2. Barone, J. A. (1999) Domperidone: a peripherally acting dopamine2-receptor antagonist. Ann. Pharmacother. 33, 429-440. https://doi.org/10.1345/aph.18003
  3. Biller, L. H. and Schrag, D. (2021) Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325, 669-685. https://doi.org/10.1001/jama.2021.0106
  4. Braicu, C., Buse, M., Busuioc, C., Drula, R., Gulei, D., Raduly, L., Rusu, A., Irimie, A., Atanasov, A. G., Slaby, O., Ionescu, C. and Berindan-Neagoe, I. (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel) 11, 1618.
  5. Dalton, S. O., Mellemkjaer, L., Thomassen, L., Mortensen, P. B. and Johansen, C. (2005) Risk for cancer in a cohort of patients hospitalized for schizophrenia in Denmark, 1969-1993. Schizophr. Res. 75, 315-324. https://doi.org/10.1016/j.schres.2004.11.009
  6. Dhillon, A. S., Hagan, S., Rath, O. and Kolch, W. (2007) MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290. https://doi.org/10.1038/sj.onc.1210421
  7. Driver, J. A., Logroscino, G., Buring, J. E., Gaziano, J. M. and Kurth, T. (2007) A prospective cohort study of cancer incidence following the diagnosis of Parkinson's disease. Cancer Epidemiol. Biomarkers Prev. 16, 1260-1265. https://doi.org/10.1158/1055-9965.EPI-07-0038
  8. Fang, J. Y. and Richardson, B. C. (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6, 322-327. https://doi.org/10.1016/S1470-2045(05)70168-6
  9. Gargalionis, A. N., Papavassiliou, K. A. and Papavassiliou, A. G. (2021) Targeting STAT3 signaling pathway in colorectal cancer. Biomedicines 9, 1016.
  10. Gholipour, N., Ohradanova-Repic, A. and Ahangari, G. (2018) A novel report of MiR-4301 induces cell apoptosis by negatively regulating DRD2 expression in human breast cancer cells. J. Cell. Biochem. 119, 6408-6417. https://doi.org/10.1002/jcb.26577
  11. Gkouveris, I., Nikitakis, N., Karanikou, M., Rassidakis, G. and Sklavounou, A. (2014) Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol. Rep. 32, 2175-2182. https://doi.org/10.3892/or.2014.3440
  12. Jan, R. and Chaudhry, G. E. (2019) Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 9, 205-218. https://doi.org/10.15171/apb.2019.024
  13. Kahsai, A. W., Shah, K. S., Shim, P. J., Lee, M. A., Shreiber, B. N., Schwalb, A. M., Zhang, X., Kwon, H. Y., Huang, L. Y., Soderblom, E. J., Ahn, S. and Lefkowitz, R. J. (2023) Signal transduction at GPCRs: allosteric activation of the ERK MAPK by beta-arrestin. Proc. Natl. Acad. Sci. U. S. A. 120, e2303794120.
  14. Kim, K., Han, Y., Duan, L. and Chung, K. Y. (2022) Scaffolding of mitogen-activated protein kinase signaling by beta-arrestins. Int. J. Mol. Sci. 23, 1000.
  15. Kundu, J., Choi, B. Y., Jeong, C. H., Kundu, J. K. and Chun, K. S. (2014) Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2-and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol. Rep. 32, 821-828. https://doi.org/10.3892/or.2014.3223
  16. Mengie Ayele, T., Tilahun Muche, Z., Behaile Teklemariam, A., Bogale Kassie, A. and Chekol Abebe, E. (2022) Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review. J. Inflamm. Res. 15, 1349-1364. https://doi.org/10.2147/JIR.S353489
  17. Midthun, L., Shaheen, S., Deisch, J., Senthil, M., Tsai, J. and Hsueh, C. T. (2019) Concomitant KRAS and BRAF mutations in colorectal cancer. J. Gastrointest. Oncol. 10, 577-581. https://doi.org/10.21037/jgo.2019.01.10
  18. Mu, J., Huang, W., Tan, Z., Li, M., Zhang, L., Ding, Q., Wu, X., Lu, J., Liu, Y., Dong, Q. and Xu, H. (2017) Dopamine receptor D2 is correlated with gastric cancer prognosis. Oncol. Lett. 13, 1223-1227. https://doi.org/10.3892/ol.2017.5573
  19. Oh, H. J., Magar, T. B. T., Pun, N. T., Lee, Y., Kim, E. H., Lee, E. S. and Park, P. H. (2018) YJI-7 suppresses ROS production and expression of inflammatory mediators via modulation of p38MAPK and JNK signaling in RAW 264.7 macrophages. Biomol. Ther. (Seoul) 26, 191-200. https://doi.org/10.4062/biomolther.2016.276
  20. Park, K. H., Joo, S. H., Seo, J. H., Kim, J., Yoon, G., Jeon, Y. J., Lee, M. H., Chae, J. I., Kim, W. K. and Shim, J. H. (2022) Licochalcone H induces cell cycle arrest and apoptosis in human skin cancer cells by modulating JAK2/STAT3 signaling. Biomol. Ther. (Seoul) 30, 72-79. https://doi.org/10.4062/biomolther.2021.149
  21. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G. and Migliaccio, A. (2020) ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192-203. https://doi.org/10.1038/s12276-020-0384-2
  22. Piao, M. J., Han, X., Kang, K. A., Fernando, P., Herath, H. and Hyun, J. W. (2022) The endoplasmic reticulum stress response mediates shikonin-induced apoptosis of 5-fluorouracil-resistant colorectal cancer cells. Biomol. Ther. (Seoul) 30, 265-273. https://doi.org/10.4062/biomolther.2021.118
  23. Pierce, S. R., Fang, Z., Yin, Y., West, L., Asher, M., Hao, T., Zhang, X., Tucker, K., Staley, A., Fan, Y., Sun, W., Moore, D. T., Xu, C., Tsai, Y. H., Parker, J., Prabhu, V. V., Allen, J. E., Lee, D., Zhou, C. and Bae-Jump, V. (2021) Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer. J. Exp. Clin. Cancer Res. 40, 61.
  24. Ponsioen, B., Post, J. B., Buissant des Amorie, J. R., Laskaris, D., van Ineveld, R. L., Kersten, S., Bertotti, A., Sassi, F., Sipieter, F., Cappe, B., Mertens, S., Verlaan-Klink, I., Boj, S. F., Vries, R. G. J., Rehmann, H., Vandenabeele, P., Riquet, F. B., Trusolino, L., Bos, J. L. and Snippert, H. J. G. (2021) Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nat. Cell Biol. 23, 377-390. https://doi.org/10.1038/s41556-021-00654-5
  25. Qu, C., Park, J. Y., Yun, M. W., He, Q. T., Yang, F., Kim, K., Ham, D., Li, R. R., Iverson, T. M., Gurevich, V. V., Sun, J. P. and Chung, K. Y. (2021) Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade. Proc. Natl. Acad. Sci. U. S. A. 118, e2026491118.
  26. Raut, P. K. and Park, P. H. (2020) Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: critical role of HO-1 signaling. Biochem. Pharmacol. 180, 114186.
  27. Raut, P. K., Lee, H. S., Joo, S. H. and Chun, K. S. (2021) Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem. Toxicol. 157, 112604.
  28. Richa, S., Dey, P., Park, C., Yang, J., Son, J. Y., Park, J. H., Lee, S. H., Ahn, M. Y., Kim, I. S., Moon, H. R. and Kim, H. S. (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28, 184-194. https://doi.org/10.4062/biomolther.2019.074
  29. Sahin, I. H., Ciombor, K. K., Diaz, L. A., Yu, J. and Kim, R. (2022) Immunotherapy for microsatellite stable colorectal cancers: challenges and novel therapeutic avenues. Am. Soc. Clin. Oncol. Educ. Book 42, 1-12.
  30. Shakya, R., Byun, M. R., Joo, S. H., Chun, K. S. and Choi, J. S. (2023) Domperidone exerts antitumor activity in triple-negative breast cancer cells by modulating reactive oxygen species and JAK/STAT3 signaling. Biomol. Ther. (Seoul) 31, 692-699. https://doi.org/10.4062/biomolther.2023.173
  31. Wang, C. and Youle, R. J. (2009) The role of mitochondria in apoptosis. Annu. Rev. Genet. 43, 95-118. https://doi.org/10.1146/annurev-genet-102108-134850