Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.143

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling  

Lee, Seung-On (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University)
Joo, Sang Hoon (College of Pharmacy, Daegu Catholic University)
Kwak, Ah-Won (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Lee, Mee-Hyun (College of Korean Medicine, Dongshin University)
Seo, Ji-Hye (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University)
Cho, Seung-Sik (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Yoon, Goo (Department of Pharmacy, College of Pharmacy, Mokpo National University)
Chae, Jung-Il (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University)
Shim, Jung-Hyun (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 658-666 More about this Journal
Abstract
Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.
Keywords
Podophyllotoxin; Colon cancer; Cell cycle arrest; Reactive oxygen species; p38; Apoptosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nogueira, V. and Hay, N. (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309-4314.   DOI
2 Oh, H. N., Kwak, A. W., Lee, M. H., Kim, E., Yoon, G., Cho, S. S., Liu, K., Chae, J. I. and Shim, J. H. (2021) Targeted inhibition of cMET by podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung cancer cells. Phytomedicine 80, 153355.   DOI
3 Liou, G. Y. and Storz, P. (2010) Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496.   DOI
4 Zhang, X. Y., Ni, J. M. and Qiao, H. (2006) Studies on antitumor effects of podophyllotoxin nanoliposome. Zhongguo Zhong Yao Za Zhi 31, 148-150.
5 Choi, B. H., Kim, J. M. and Kwak, M. K. (2021) The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch. Pharm. Res. 44, 263-280.   DOI
6 Reed, J. C., Cuddy, M., Slabiak, T., Croce, C. M. and Nowell, P. C. (1988) Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336, 259-261.   DOI
7 Schieber, M. and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462.   DOI
8 Van Opdenbosch, N. and Lamkanfi, M. (2019) Caspases in cell death, inflammation, and disease. Immunity 50, 1352-1364.   DOI
9 Yu, X., Che, Z. and Xu, H. (2017) Recent advances in the chemistry and biology of podophyllotoxins. Chemistry 23, 4467-4526.   DOI
10 Hu, H., Tian, M., Ding, C. and Yu, S. (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9, 3083.   DOI
11 Hu, L. L., Liao, B. Y., Wei, J. X., Ling, Y. L., Wei, Y. X., Liu, Z. L., Luo, X. Q. and Wang, J. L. (2020) Podophyllotoxin exposure causes spindle defects and DNA damage-induced apoptosis in mouse fertilized oocytes and early embryos. Front. Cell Dev. Biol. 8, 600521.   DOI
12 Khan, K. H., Blanco-Codesido, M. and Molife, L. R. (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit. Rev. Oncol. Hematol. 90, 200-219.   DOI
13 Kim, T. W., Hong, D. W. and Hong, S. H. (2020) CB13, a novel PPARgamma ligand, overcomes radio-resistance via ROS generation and ER stress in human non-small cell lung cancer. Cell Death Dis. 11, 848.   DOI
14 Shang, Z. F., Tan, W., Liu, X. D., Yu, L., Li, B., Li, M., Song, M., Wang, Y., Xiao, B. B., Zhong, C. G., Guan, H. and Zhou, P. K. (2015) DNA-PKcs negatively regulates cyclin B1 protein stability through facilitating its ubiquitination mediated by Cdh1-APC/C pathway. Int. J. Biol. Sci. 11, 1026-1035.   DOI
15 Chattopadhyay, S., Bisaria, V. S., Panda, A. K. and Srivastava, A. K. (2004) Cytotoxicity of in vitro produced podophyllotoxin from Podophyllum hexandrum on human cancer cell line. Nat. Prod. Res. 18, 51-57.   DOI
16 Bai, J., Li, Y. and Zhang, G. (2017) Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 14, 348-362.   DOI
17 Canel, C., Moraes, R. M., Dayan, F. E. and Ferreira, D. (2000) Podophyllotoxin. Phytochemistry 54, 115-120.   DOI
18 Chae, I. G., Song, N. Y., Kim, D. H., Lee, M. Y., Park, J. M. and Chun, K. S. (2020) Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem. Toxicol. 139, 111253.   DOI
19 Chio, I. I. C. and Tuveson, D. A. (2017) ROS in cancer: the burning question. Trends Mol. Med. 23, 411-429.   DOI
20 Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G. and Pae, H. O. (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639.   DOI
21 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.   DOI
22 Wagner, E. F. and Nebreda, A. R. (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537-549.   DOI
23 Chun, K. S., Jang, J. H. and Kim, D. H. (2020) Perspectives regarding the intersections between STAT3 and oxidative metabolism in cancer. Cells 9, 2202.   DOI
24 Craig, C., Wersto, R., Kim, M., Ohri, E., Li, Z., Katayose, D., Lee, S. J., Trepel, J., Cowan, K. and Seth, P. (1997) A recombinant adenovirus expressing p27Kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells. Oncogene 14, 2283-2289.   DOI
25 Wang, H., Jiang, D., Liu, J., Ye, S., Xiao, S., Wang, W., Sun, Z., Xie, Y. and Wang, J. (2013) Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway. Cancer Biother. Radiopharm. 28, 607-614.   DOI
26 Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87.   DOI
27 Siegel, R. L., Miller, K. D. and Jemal, A. (2020) Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30.   DOI
28 Dash, B. C. and El-Deiry, W. S. (2005) Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol. Cell. Biol. 25, 3364-3387.   DOI
29 Deng, X., Ruvolo, P., Carr, B. and May, W. S., Jr. (2000) Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc. Natl. Acad. Sci. U.S.A. 97, 1578-1583.   DOI
30 Hande, K. R. (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34, 1514-1521.   DOI
31 Ko, Y. H., Kim, S. K., Kwon, S. H., Seo, J. Y., Lee, B. R., Kim, Y. J., Hur, K. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2019) 7,8,4'-Trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomol. Ther. (Seoul) 27, 363-372.   DOI
32 Lee, Y. J., Kim, W. I., Kim, S. Y., Cho, S. W., Nam, H. S., Lee, S. H. and Cho, M. K. (2019) Flavonoid morin inhibits proliferation and induces apoptosis of melanoma cells by regulating reactive oxygen species, Sp1 and Mcl-1. Arch. Pharm. Res. 42, 531-542.   DOI
33 Liu, B., Tan, X., Liang, J., Wu, S., Liu, J., Zhang, Q. and Zhu, R. (2014) A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci. Rep. 4, 7041.   DOI
34 Moradi Marjaneh, R., Hassanian, S. M., Ghobadi, N., Ferns, G. A., Karimi, A., Jazayeri, M. H., Nasiri, M., Avan, A. and Khazaei, M. (2018) Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J. Cell. Physiol. 233, 6538-6549.   DOI
35 Darling, N. J. and Cook, S. J. (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta 1843, 2150-2163.   DOI
36 Zeeshan, H. M., Lee, G. H., Kim, H. R. and Chae, H. J. (2016) Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327.   DOI
37 Zhang, W., Liu, C., Li, J., Liu, R., Zhuang, J., Feng, F., Yao, Y. and Sun, C. (2020) Target analysis and mechanism of podophyllotoxin in the treatment of triple-negative breast cancer. Front. Pharmacol. 11, 1211.   DOI
38 Zhao, Y., Yan, Y., Zhao, Z., Li, S. and Yin, J. (2015) The dynamic changes of endoplasmic reticulum stress pathway markers GRP78 and CHOP in the hippocampus of diabetic mice. Brain Res. Bull. 111, 27-35.   DOI
39 Weyemi, U., Caillou, B., Talbot, M., Ameziane-El-Hassani, R., Lacroix, L., Lagent-Chevallier, O., Al Ghuzlan, A., Roos, D., Bidart, J. M., Virion, A., Schlumberger, M. and Dupuy, C. (2010) Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr. Relat. Cancer 17, 27-37.   DOI
40 Osone, S., Hosoi, H., Kuwahara, Y., Matsumoto, Y., Iehara, T. and Sugimoto, T. (2004) Fenretinide induces sustained-activation of JNK/p38 MAPK and apoptosis in a reactive oxygen species-dependent manner in neuroblastoma cells. Int. J. Cancer 112, 219-224.   DOI
41 Martindale, J. L. and Holbrook, N. J. (2002) Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15.   DOI
42 Xie, Y. H., Chen, Y. X. and Fang, J. Y. (2020) Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22.   DOI
43 Qiao, L. and Wong, B. C. (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist. Updat. 12, 55-64.   DOI
44 Sathish, M., Kavitha, B., Nayak, V. L., Tangella, Y., Ajitha, A., Nekkanti, S., Alarifi, A., Shankaraiah, N., Nagesh, N. and Kamal, A. (2018) Synthesis of podophyllotoxin linked beta-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem. 144, 557-571.   DOI
45 Shah, Z., Gohar, U. F., Jamshed, I., Mushtaq, A., Mukhtar, H., ZiaUi-Haq, M., Toma, S. I., Manea, R., Moga, M. and Popovici, B. (2021) Podophyllotoxin: history, recent advances and future prospects. Biomolecules 11, 603.   DOI
46 Richa, S., Dey, P., Park, C., Yang, J., Son, J. Y., Park, J. H., Lee, S. H., Ahn, M. Y., Kim, I. S., Moon, H. R. and Kim, H. S. (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28, 184-194.   DOI
47 Li, A. X., Sun, M. and Li, X. (2017) Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential. Eur. Rev. Med. Pharmacol. Sci. 21, 1368-1374.