Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.136

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling  

Han, Yong-Seok (Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Lee, Jun Hee (Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research institute, Department of Physiology, School of Medicine, Pusan National University)
Lee, Sang Hun (Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Publication Information
Biomolecules & Therapeutics / v.23, no.3, 2015 , pp. 225-232 More about this Journal
Abstract
We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.
Keywords
Anticancer effect; Cell cycle arrest; Fucoidan; Human colorectal cancer cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. J., Lee, J., Park, J. W. and Jee, Y. (2008) Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. (NY) 10, 278-289.   DOI
2 Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. and Kizaki, M. (2005) Fucoidan induces apoptosis of human HSsultan cells accompanied by activation of caspase-3 and downregulation of ERK pathways. Am. J. Hematol. 78, 7-14.   DOI
3 Boo, H. J., Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Kim, S. Y., Cho, H., Yoo, E. S. and Kang, H. K. (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 25, 1082-1086.   DOI
4 Brett, C. M., Washington, C. B., Ott, R. J., Gutierrez, M. M. and Giacomini, K. M. (1993) Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharm. Res. 10, 423-426.   DOI
5 Chen, L. C. and Lee, W. S. (2013) P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J. Agric. Food Chem. 61, 2811-2819.   DOI
6 Coura, C. O., de Araujo, I. W., Vanderlei, E. S., Rodrigues, J. A., Quindere, A. L., Fontes, B. P., de Queiroz, I. N., de Menezes, D. B., Bezerra, M. M., e Silva, A. A., Chaves, H. V., Jorge, R. J., Evangelista, J. S. and Benevides, N. M. (2012) Antinociceptive and antiinflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin. Pharmacol. Toxicol. 110, 335-341.   DOI   ScienceOn
7 Croci, D. O., Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., Piccoli, A., Totani, L., Ustyuzhanina, N. E., Bilan, M. I., Usov, A. I., Grachev, A. A., Morozevich, G. E., Berman, A. E., Sanderson, C. J., Kelly, M., Di Gregorio, P., Rossi, C., Tinari, N., Iacobelli, S., Rabinovich, G. A., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2011) Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 6, e17283.   DOI   ScienceOn
8 Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552.   DOI
9 Damonte, E. B., Matulewicz, M. C. and Cerezo, A. S. (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11, 2399-2419.   DOI
10 Fang, Q., Naidu, K. A., Naidu, K. A., Zhao, H., Sun, M., Dan, H. C., Nasir, A., Kaiser, H. E., Cheng, J. Q., Nicosia, S. V. and Coppola, D. (2006) Ascorbyl stearate inhibits cell proliferation and tumor growth in human ovarian carcinoma cells by targeting the PI3K/AKT pathway. Anticancer Res. 26, 203-209.
11 Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.   DOI
12 Hill, M. M. and Hemmings, B. A. (2002) Inhibition of protein kinase B/Akt. implications for cancer therapy. Pharmacol. Ther. 93, 243-251.   DOI
13 Itoh, H., Noda, H., Amano, H., Zhuaug, C., Mizuno, T. and Ito, H. (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 13, 2045-2052.
14 Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J. and Thun, M. J. (2005) Cancer statistics, 2005. CA Cancer J. Clin. 55, 10-30.   DOI
15 Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676.   DOI   ScienceOn
16 Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. (2012) Suppression of alpha-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.
17 Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimeno, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65, 173-179.   DOI
18 Lee, H., Kim, J. S. and Kim, E. (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7, e50624.   DOI
19 Samowitz, W. S. and Slattery, M. L. (2002) Missense mismatch repair gene alterations, microsatellite instability, and hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 20, 3178; author reply 3178-3179.   DOI
20 Sarkar, F. H. and Li, Y. (2004) Cell signaling pathways altered by natural chemopreventive agents. Mutat. Res. 555, 53-64.   DOI
21 Sherr, C. J. (1994) G1 phase progression: cycling on cue. Cell 79, 551-555.   DOI
22 Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672-1677.   DOI
23 Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71.   DOI
24 Xue, M., Ge, Y., Zhang, J., Wang, Q., Hou, L., Liu, Y., Sun, L. and Li, Q. (2012) Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One 7, e43483.   DOI
25 Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501.   DOI
26 Xue, M., Ge, Y., Zhang, J., Liu, Y., Wang, Q., Hou, L. and Zheng, Z. (2013) Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/beta-catenin signaling. Nutr. Cancer 65, 460-468.   DOI