• Title/Summary/Keyword: antibiotics resistance inhibition

Search Result 72, Processing Time 0.032 seconds

Genetic properties of R plasmids in Shigella isolates of swine origin in Korea (돈(豚)에서 분리(分離)한 Shigella균유래(菌由來) R plasmid의 유전적(遺傳的) 특성(特性)에 관한 연구(硏究))

  • Choi, Won-pil;Kwun, Hae-byeng;Jung, Suk-chan
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 1989
  • This paper dealt with the distribution of Shigella spp. on 5 piggeries in Taegu and Kyungpook during the period from August to October 1987. Isolated Shigella were examined for serogrouping, antimicrobial drug resistance and detection of R plasmid. Genetic properties of R plasmid in Shigella have examined to fertility inhibition (Fi) and gel electrophoresis was performed for the isolation of plasmid DNA. The results obtained were summarised as followings; 1. Of total 2,978 samples from 5 piggeries, 82 strains (2.8%) of Shigella spp. were isolated from 82 samples. The isolated strains were identified as S dysenteriae (60 strains), S flexneri (20 strains) and S sonnei (2 strains). 2. Of the 82 strains examined 67 (95.1%) were resistant to one or more antibiotics, such as ampicillin (Am), chloramphenicol (Cm), kanamycin (Km), nalidixic acid (Na), rifampicin (Rf), streptomycin (Sm), sulfademethoxine (Su), and tetracycline (Tc) and higher resistant to Su (90.2%), Sm (63.4%) and Tc (63.4%). 3. Of the 78 resistant Shigella strains 26 (33.3%) harbored conjugative R plasmids and the transfer frequency of Sm (50.0%), Cm(33.3%) resistance was much higher than that of the other drug resistance. 4. The most common resistant patterns were SmSuTc, Su and AmSmSuTc. 5. Out of the 26 Shigella R plasm ids examined for Fi, 14(53.8%) were $Fi^+$ and the remainder were $Fi^-$. 6. The plasmid DNA profiles in Shigella spp. (9 strains) isolated from pigs were confirmed as being 2 to 9 fragments by the gel electrophoresis. Their molecular size ranged 2.17 to 87.62 kilobase (Kb). All strains of Shigella spp. consisted in 15.4 Kb plasmids.

  • PDF

L-glutamine:D-fructose-6-phosphate Aminotransferase as a Key Protein Linked to Multidrug Resistance in E. coli KD43162

  • Lee, Sung-Eun;Jung, Tae-Jeon;Park, Byeoung-Soo;Kim, Byung-Woo;Lee, Eun-Woo;Kim, Hye Jin;Yum, Jong Hwa
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.227-232
    • /
    • 2015
  • A microarray study has been employed to understand changes of gene expression in E. coli KD43162 resistant to ampicillin, ampicillin-sulbactam, piperacillin, piperacillin-tazobactam, cefazolin, cefepime, aztreonam, imipenem, meropenem, gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, fosfomycin, and trimethoprim-sulfamethoxazole except for amikacin using disk diffusion assay. Using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and MALDI-TOF MS analyses, 36 kDa of outer membrane proteins (OMPs) was found to be deleted in the multidrug resistant E. coli KD 43162. Microarray analysis was used to determine up- and down-regulated genes in relation to multidrug resistant E. coli KD43162. Among the up-regulated genes, these genes were corresponded to express the proteins as penicillin-binding proteins (PBPs), tartronate semialdehyde reductase, ethanolamine utilization protein, shikimate kinase I, allantoinase, predicted SAM-dependent methyltransferase, L-glutamine: D-fructose-6-phosphate aminotransferase (GFAT), phospho-glucosamine mutase, predicted N-acetylmannosamine kinase, and predicted N-acetylmannosamine-6-P epimerase. Up-regulation of PBPs, one of primary target sites of antibiotics, might be responsible for the multidrug resistance in E. coli with increasing amount of target sites. Up-regulation of GFAT enzyme may be related to the up-regulation of PBPs because GFAT produces N-acetylglucosamine, a precursor of peptidoglycans. One of GFAT inhibitors, azaserine, showed a potent inhibition on the growth of E. coli KD43162. In conclusion, up-regulation of PBPs and GFATs with the loss of 36 kDa OMP refers the multidrug resistance in E. coli KD 43162.

Antibacterial Effect of Sinhyowoldosan Against Methicillin-Resistant Staphylococcus aureus (신효월도산(神效越桃散)이 메티실린에 내성이 있는 Staphylococcus aureus에 대한 항균활성에 관한 연구)

  • Shin, In-Sik;Kang, Ok-Hwa;Joung, Dae-Ki;Kang, Hee-Jung;Kim, Ji-Eun;Hwang, Hyeong-Chil;Kim, In-Won;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Objectives : Methicillin-Resistant Staphylococcus aureus (MRSA) is a cephalosporin and beta-lactam antibiotic-resistant strains. In most cases, that is spread from infected patients and infection rates are growing increasingly. Thus, accordingly, increased resistance to antibiotics is causing serious problems in the world. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infections diseases. Methods : The antibacterial activities of Sinhyowoldosan were evaluated against 3 strains of Methicillin-resistant staphylococcus aureus(MRSA) and 1 standard Methicillin-susceptible S. aureus (MSSA) strain by using the disc diffusion method, minimal inhibitory concentrations (MICs) assay, colorimetric assay using MTT test, checkerboard dilution test and time-kill assay was performed under dark. Results : The MIC (minimum inhibitory concentration) of Sinhyowoldosan water extract against S. aureus strains ranged from 500 to 2,000 ${\mu}g/mL$, so we have confirmed it on a strong antibacterial effect. Also, the combinations of Sinhyowoldosan water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Sinhyowoldosan water extract against MRSA have antibacterial activity, it has potential as alternatives to antibiotic agent. the combination test was used, Triton X-100 (TX) and DCCD for measurement of membrane permeability and inhibitor of ATPase. As a result, antimicrobial activity of SH is affected by the cell membrane were assessed. Conclusion : We suggest that the Sinhyowoldosan water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Inhibition of Oligomycin Biosynthesis by olmA5 Gene Knock-out in Streptomyces avermitilis (Streptomyces avermitilis에서 olmA5 Gene의 Knock-out에 의한 Oligomycin 합성 억제)

  • Kang, Hyun-Woo;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Streptomyces is well known for their ability to synthesize enormous varieties of antibiotics as secondary metabolites. Among them, S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. However, S. avermitilis also produces oligomycin, which is a potential toxic inhibitor of oxidative phosphorylation in mammalian cells. Therefore, we decided to disrupt oligomycin synthetase gene to prevent co-production of oligomycin in S. avermitilis. To create plasmid for disruption, the smallest gene of oligomycin synthetase gene cluster was obtained by PCR from S. avermitilis chromosome. Then, apramycin resistance gene was inserted in oligomycin synthetase gene for selection. After transformation of this plasmid, oligomycin synthetase gene (olmA5) in the chromosome was displaced with disruption cassette on the plasmid via homologous recombination. As a result of this gene replacement, we obtained mutants (olmA5::apra) that no longer makes the toxic oligomycin. And the mutants confirmed by PCR and HPLC analysis. However, showed no increasement of avermectin production in the mutant was observed.

Antibacterial Activity of Bacillus sp. DH-9 Isolated from Sea Water (해수 분리 세균 Bacillus sp. DH-9의 항균활성)

  • Kim, Young-Man;Kim, Do-Kyun;Kim, Nam-Hee;Byun, Tae-Hwan;Kim, Ah-Ra;Lee, Eun-Woo;Kwon, Hyun-Ju;Kim, Byung-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Emerging of antibiotic resistance of pathogenic bacteria is now a very serious problem in the clinics to treat the diseases, which have been easy to cure by antibiotic treatments before. Unfortunately, antibiotics developed till now are not effective any more against the resistant bacteria. Lots of efforts to discover new antibiotics having novel and unique structures and functions are really urgent and undergoing in the whole world. In this study, we tried to screen and isolate Same unique bacterial strains producing antibacterial substances from the sea water, which is the poor environment for bacteria 10 make their growing. Three bacterial strains among 916 strains isolated showed inhibition clear zone on the marine agar plate growing pathogenic bacteria including Acinetobacter baumannii, Edwardsiella tarda, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica. One of them, which was identified as Bacillus sp. DH-9 from 16S rRNA gene analysis, showed especially considerable antibacterial activity against S. aureus which is notorious for methicillin resistant S. aureus (MRSA). The growth of S. aureus was totally inhibited when the supernatant of Bacillus sp. DH-9 culture was treated on.

Screening of Antimicrobial Lactic Acid Bacteria against Bovine Mastitis (여러 분리원으로부터 유방염 원인균에 대한 항균력을 가진 유산균의 분리)

  • Lee, Na-Kyoung;Choi, In-Ae;Park, Yong-Ho;Kim, Jong-Man;Kim, Jae-Myung;Jung, Suk-Chan;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.543-547
    • /
    • 2007
  • Bovine mastitis is costly infectious disease of dairy cattle, being responsible for significant economic losses all over the world. Also, mastitis has troubled about resistance to antibiotics. The purpose of this study was to screen a novel antimicrobial strain from various sources (raw milk and feeds (from farm of Paju, Dangjin, and Hwasung), commercial milk, Korean traditional fermented foods, and chicken feces). The isolate was screened using triple agar layer method and deferred method was used for confirmation of antimicrobial effect. Seventy six of isolates were screened using triple agar layer method. In these strain, 42 isolates were shown a broad spectrum of autimicrobial activity against mastitis pathogens. Especially, fourteen isolates were shown over 20 mm inhibition zone against S. aureous ATCC 25923. These results suggest that these novel antimicrobial strains could be used for the alternative of antibiotics.

Salmonella typhimurium LPS Confers Its Resistance to Antibacterial Agents of Baicalin of Scutellaria baicalensis George and Novobiocin: Complementation of the rfaE Gene Required for ADP-L-glycero-D-manno-heptose Biosynthesis of Lipopolysaccharide

  • Chung, Tae-Wook;Jin, Un-Ho;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.564-570
    • /
    • 2003
  • The antibacterial mechanism of enterobacter Salmonella typhimurium was studied. The rfa (Waa) gene cluster of S. typhimurium encodes the core oligosaccharide biosynthesis of lipopolysaccharide (LPS). Among the rfa gene cluster, we recently cloned the rfaE gene, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. The rfaE mutant synthesizes heptose-deficient LPS, which consists of only lipid A and 3-deoxy-D-manno-octulosonic acid (KDO), thus making an incomplete LPS and a rough phenotype mutant. S. typhimurium deep-rough mutants with the heptose region of the inner core show a reduced growth rate, sensitivity to high temperature, and hypersensitivity to hydrophobic antibiotics such as baicalin isolated from the medicinal herb of Scutellaria baicalensis Georgi. Thus, in this study, the cloned rfaE gene was added to the S. typhimurium rfaE mutant strain SL1102 (rfaE543), which makes heptose-deficient LPS and has a deep-rough phenotype. The complementation created a smooth phenotype in the SL1102 strain. The sensitivity of SL1102 to bacteriophages was also recovered to that of wild-type strain, indicating that LPS is used as the receptor for bacteriophage infection. The permeability barrier of SL1102 to hydrophobic antibiotics such as novobiocin and baicalin was restored to that of the wild-type, suggesting that antibiotic resistance of the wild-type strain is highly correlated with their LPS. Through an agar diffusion assay, the growth-inhibition activity of baicalin was fully observed in the mutant SL1102 strain. However, only a half of the inhibitory activity was detected in the rfaE complemented SL1102 strain. Furthermore, the LPS produced by the rfaE-complemented SL1102 strain was indistinguishable from LPS biosynthesis of smooth strains.

Antioxidant and Anti-Inflammatory Effect of Probiotic Lactobacillus plantarum KU15149 Derived from Korean Homemade Diced-Radish Kimchi

  • Han, Kyoung Jun;Lee, Ji-Eun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.591-598
    • /
    • 2020
  • Lactobacillus plantarum KU15149 was demonstrated to have probiotic behavior and functions, including antioxidant and anti-inflammatory activity. L. plantarum KU15149 obtained from homemade diced-radish kimchi has a high survival rate under artificial gastric acid (pH 2.5, 0.3% pepsin) and bile salt (0.3% oxgall) conditions. However, L. plantarum KU15149 did not produce β-glucuronidase, which is known to be a carcinogenic enzyme with resistance to several antibiotics, such as gentamycin, kanamycin, streptomycin, tetracycline, and ciprofloxacin. L. plantarum KU15149 strongly adhered to HT-29 cells and had high antioxidant activity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging and β-carotene bleaching assays. L. plantarum KU15149 also exhibited a pronounced inhibition of nitric oxide (NO) production, along with expression of nitric oxide synthase (iNOS) and cyclooxygenase -2 (COX-2) as well as pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, when RAW 264.7 cells were stimulated with LPS. Therefore, L. plantarum KU15149 exhibited pharmaceutical functionality as a potential probiotic.

Isolation and Antibacterial Activity of Actinomycetes Producing Growth Inhibition Compounds Against Multi-antibiotic Resistant Pseudomonas Aeruginosa (항생제 다제내성균 Pseudomonas aeruginosa에 대한 생육저해물질 생산 방선균의 분리 및 항균활성)

  • Kang, Dong-Hee;Bae, Ho-Kyung;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • Of the 500 Actinomycetes isolates obtained from soil, one isolate grown on maltose as the sole carbon source produced compound BHK-P19, which inhibited the growth of multiple drug resistant P. aeruginosa 0245. Ultraviolet radiation mutagenesis curtailed production of BHK-P19. Mutation of the BHK-P19 producer using N-methyl-N'-nitro-N-nitroso-guanidine obviated the antibacterial activity to P. aeruginosa 0245, but not towards P. aeruginosa 0225. The mixing of BHK-P19 and BHK-S5 culture extracts inhibited P. aeruginosa 0254, 0225 and 1113. The combined application of BHK-P19 culture extract and Schizandra chinensis Baillon extract inhibited P. aeruginosa 0254, 0225, 0826, 1113, 1378, 1731 and 2492. Use of various concentrations of BHK-P19 culture extract and ampicillin markedly increased antibacterial activity against multi-drug resistant P. aeruginose 1113.

Effect of Scutellariae Radix as a Novel Antibacterial Herb on the ppk(Polyphosphate Kinase) Mutant of Salmonella typhimurium

  • Hahm, Dae-Hyun;Yeom, Mi-Jung;H.Lee, Eun-Joo;Shim, In-Sop;Lee, Hye-Jung;Kim, Hong-Yeoul
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1061-1065
    • /
    • 2001
  • The antibacterial effects of water extracts of Scutellariate Radix (a dried root of Scutellaria baicalensis GEORGI) and its major flavonoid components, Baicalin and Baicalein, on Salmonella typhimurium, a representative enteric pathogen, were studied. Through a Kriby-Bauer disc analysis, the growth-inhibition activity of Scutellariae Radix against. S. typhimurium was found to be compatible with commercial antibiotics, such as ampicillin, chloramphenicol, and streptomycin. In contrast, the growth of a nonpathogenic E. coli strain was unaffercted by Scutellariae Radix. To examine the effect of polyphosphate kinase (ppk), a putative virulence factor, on the antibacterial activity of Scutellariae Radix, the growth profile of a ppk mutant of S. typhimurium was investigated in a tryptic soy broth containing different concentrations of water extracts of Scutellariae Radix. The ppk mutant was able to grow in 6 mg/ml of water extracts of Scutellariae Radix, whereas in 6 mg/ml of water extracts of Scutellariae Radix, whereas the wild-type could not, implying that the inactivation of ppk made S. typhimurium more resistant to the antibacterial activity of Scutellariae Radix. No enhanced resistance was observed in a ppk mutant of S. typhimurium complemented with a ppk expression vector. The attenuation of the virulence by ppk inactivation was also observed in a virulence assay using BLAB/c mice. Neither Baicalin nor Baicalein exhibited any growth-inhibition activity against S. typhimurium. The water extracts of Scutellariae Radix stimulated the transcription of ppk, especially in the early growth-stage of S. typhimurium.

  • PDF