• Title/Summary/Keyword: antibiotics alternative

Search Result 216, Processing Time 0.028 seconds

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

An updated review on probiotics as an alternative of antibiotics in poultry - A review

  • Yaqoob, Muhammad Umar;Wang, Geng;Wang, Minqi
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1109-1120
    • /
    • 2022
  • Antibiotics used to be supplemented to animal feeds as growth promoter and as an effective strategy to reduce the burden of pathogenic bacteria present in the gastro-intestinal tract. However, in-feed antibiotics also kill bacteria that may be beneficial to the animal. Secondly, unrestricted use of antibiotics enhanced the antibiotic resistance in pathogenic bacteria. To overcome above problems, scientists are taking a great deal of measures to develop alternatives of antibiotics. There is convincing evidence that probiotics could replace in-feed antibiotics in poultry production. Because they have beneficial effects on growth performance, meat quality, bone health and eggshell quality in poultry. Better immune responses, healthier intestinal microflora and morphology which help the birds to resist against disease attack were also identified with the supplementation of probiotics. Probiotics establish cross-feeding between different bacterial strains of gut ecosystem and reduce the blood cholesterol level via bile salt hydrolase activity. The action mode of probiotics was also updated according to recently published literatures, i.e antimicrobial substances generation or toxin reduction. This comprehensive review of probiotics is aimed to highlight the beneficial effects of probiotics as a potential alternative strategy to replace the antibiotics in poultry.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

Use of Probiotics in Dairy Industry to Improve Productivity and as an Alternative to Antibiotics (낙농산업에서 항생제 사용의 문제점과 프로바이오틱스의 활용을 통한 생산성 향상)

  • Seo, Yeongeun;Yoo, Yoonjeong;Yoon, Yohan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.63-67
    • /
    • 2021
  • Antibiotics are widely used to improve productivity in the dairy industry. However, the inappropriate use of antibiotics causes the deterioration in the quality of dairy products undergoing fermentation and maturation. Hence, probiotic use is emerging as an alternative to curb the increased utilization of antibiotics. Probiotics are defined as "living microorganisms that, when administered in appropriate amounts, confer health benefits on the host." They may improve host disease resistance by regulating intestinal microflora balance and promote animal growth and development. In the dairy industry, probiotics have been studied to increase milk production by improving digestion in dairy cows, enhance the content of dairy components such as milk fat and protein, reduce the risk of mastitis in cows, and increase calf weight. Thus, the use of probiotics can improve the production and safety of dairy products. However, some probiotics are still unstable during storage and have low quality and safety issues. Therefore, to reduce the use of antibiotics in the dairy industry, probiotics should be developed and produced considering the above-mentioned problems.

Effect of Feeding Direct-fed Microbial as an Alternative to Antibiotics for the Prophylaxis of Calf Diarrhea in Holstein Calves

  • Kim, Min-Kook;Lee, Hong-Gu;Park, Jeong-Ah;Kang, Sang-Kee;Choi, Yun-Jaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.643-649
    • /
    • 2011
  • The objective of this study was to determine the effect of feeding direct-fed microbials (DFM) on the growth performance and prophylaxis of calf diarrhea during the pre-weaning period as an alternative to antibiotics. A multi-species DFM was formulated including three lactic acid bacteria (Lactobacillus salivarius Ls29, Pediococcus acidilactia Pa175, and L. plantarum Lp177), three Bacillus strains (B. subtilis T4, B. polymyxa T1 and SM2), one yeast, Saccharomyces boulardii, and a nonpathogenic E. coli Nissle 1917. Lactic acid bacteria and Bacillus strains were selected based on the antibacterial activity against various animal pathogens, especially pathogenic E. coli using agar diffusion methods in vitro. Test and control groups were fed milk replacer and calf starter supplemented with DFM ($10^9$ cfu each of eight species/d/head, n = 29) or with antibiotics (0.1% neomycin sulfate in milk replacer and Colistin 0.08% and Oxyneo 110/110 0.1% in calf starter, n = 15), respectively. Overall fecal score and the incidence rate of diarrhea were reduced in the DFM group compared to the antibiotics one. About 40% of calves in antibiotic group suffered from diarrhea while in DFM group only 14% showed diarrhea. There was no difference in the average daily gain and feed efficiency of two groups. The hematological levels of calves were all within the normal range with no significant difference. In conclusion, the feeding of multispecies DFM during the pre-weaning period could reduce calf diarrhea and there was no difference in the growth performance between the groups, thus showing the potential as an alternative to antibiotics.

Role of dietary nucleotides to mitigate post-weaning stress in newly weaned pigs

  • Shin, Taeg Kyun;Wickramasuriya, Samiru Sudharaka;Cho, Hyun Min;Kim, Eunjoo;Kim, Younghwa;Park, Juncheol;Macelline, Shemil Priyan;Heo, Jung Min;Yi, Young-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.477-486
    • /
    • 2017
  • This review provides an overview of dietary nucleotides as an alternative to in-feed antibiotics for weaning pigs. Dietary nucleotides are composed of DNA or RNA molecules and are normally contained in protein-rich feed ingredient, brewer's yeast, yeast extract, and milk. Weaning pigs are suffering from several stresses, such as environmental challenges (i.e. crowding, transportation, and feeding). Such stressors can damage the intestinal epithelium and cause an invasion by Escherichia coli, secondary inflammatory responses, and post weaning diarrhea. To overcome weaning disorder, people often use antibiotics which reduce symptoms and boost growth performance. However, since antibiotics were banned due to concerns of antibiotic resistant bacteria, researchers are studying alternative materials to antibiotics. Dietary nucleotides are one of the alternative materials for replacing antibiotics and can be used in abnormal conditions, such as weaning diarrhea, low digestibility, and disease condition. Nucleotides have substances that have important roles in cell division and cell growth, affecting growth performance, intestinal condition, and immunological effect at the weaning stage. However, nucleotides' composition is very different between sources and this aspect makes it difficult to utilize nucleotides at the weaning stage. Therefore, this review paper focuses on i) the characteristics and functions of dietary nucleotides and ii) the effect of dietary nucleotides on the growth performance and immune system of pigs.

Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review

  • Cheng, Wei Nee;Han, Sung Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1699-1713
    • /
    • 2020
  • Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.

Acidifier as an Alternative Material to Antibiotics in Animal Feed

  • Kim, Y.Y.;Kil, D.Y.;Oh, H.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1048-1060
    • /
    • 2005
  • Dietary acidifiers appear to be a possible alternative to feed antibiotics in order to improve performance of weaning pigs. It is generally known that dietary acidifiers lower gastric pH, resulting in increased activity of proteolytic enzymes, improved protein digestibility and inhibiting the proliferation of pathogenic bacteria in GI tract. It is also hypothesized that acidifiers could be related to reduction of gastric emptying rate, energy source in intestine, chelation of minerals, stimulation of digestive enzymes and intermediate metabolism. However, the exact mode of action still remains questionable. Organic acidifiers have been widely used for weaning pigs' diets for decades and most common organic acidifiers contain fumaric, citric, formic and/or lactic acid. Many researchers have observed that dietary acidifier supplementation improved growth performance and health status in weaning pigs. Recently inorganic acidifiers as well as organic acidifiers have drawn much attention due to improving performance of weaning pigs with a low cost. Several researchers introduced the use of salt form of acidifiers because of convenient application and better effects than pure state acids. However, considerable variations in results of acidifier supplementation have been reported in response of weaning pigs. The inconsistent responses to dietary acidifiers could be explained by feed palatability, sources and composition of diet, supplementation level of acidifier and age of animals.

Spray Dried Animal Plasma as an Alternative to Antibiotics in Weanling Pigs - A Review -

  • Torrallardona, David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.131-148
    • /
    • 2010
  • Piglet health at weaning is compromised due to several stress factors. Following the ban of antibiotic growth promoters new alternatives are required to control these problems. This paper reviews the evidence available for the use of spray dried animal plasma (SDAP) as an alternative to antibiotics in weaning pigs. Data from 75 trials in 43 publications involving over 12,000 piglets (mean values) have been used to calculate the performance responses of piglets according to several factors including SDAP origin, protein source from the control diet being replaced, dose of inclusion, age and weight of the piglets at weaning, sanitary conditions and simultaneous use or not of medication. Although the use of SDAP of all origins results in positive responses, it appears that plasma from porcine origin has the highest efficacy. This could be explained by the specificity of its IgG against porcine pathogens. During the first week post-weaning the response to plasma appears to increase with the inclusion dose, although over the two-week pre-starter period an optimal inclusion level of 4-8% is suggested. SDAP improves feed efficiency more markedly when the piglets are challenged with an experimental infection or when feed does not contain medication, which could be indicative of a lower expenditure of energy and nutrients to build an immune response against the challenge. There is evidence supporting that SDAP IgG and other bioactive substances therein prevent the binding of pathogens to the gut wall and reduce the incidence of diarrhoea in the post-weaning phase. Overall, plasma can be postulated as an excellent alternative to in-feed antimicrobials for piglets in the post-weaning phase.