Browse > Article
http://dx.doi.org/10.5713/ajas.20.0156

Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review  

Cheng, Wei Nee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Han, Sung Gu (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.33, no.11, 2020 , pp. 1699-1713 More about this Journal
Abstract
Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.
Keywords
Bovine Mastitis; Dairy Cow; Bacteria; Antibiotic; Alternative Bovine Mastitis Treatment; Natural Products;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Gomes F, Martins N, Ferreira ICFR, Henriques M. Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon 2019;5:e01728. https://doi.org/10.1016/j.heliyon.2019.e01728   DOI
2 Kher MN, Sheth NR, Bhatt VD. In vitro antibacterial evaluation of Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim Biotechnol 2019;30:151-8. https://doi.org/10.1080/10495398.2018.1451752   DOI
3 Hong H, Lee J-H, Kim S-K. Phytochemicals and antioxidant capacity of some tropical edible plants. Asian-Australas J Anim Sci 2018;31:1677-84. https://doi.org/10.5713/ajas.17.0903   DOI
4 Montironi ID, Reinoso EB, Paullier VC, et al. Minthostachys verticillata essential oil activates macrophage phagocytosis and modulates the innate immune response in a murine model of Enterococcus faecium mastitis. Res Vet Sci 2019;125:333-44. https://doi.org/10.1016/j.rvsc.2019.07.015   DOI
5 Bogni C, Odierno L, Raspanti C, et al. War against mastitis: current concepts on controlling bovine mastitis pathogens. In: Mendez-Vilas A, editor. Science against microbial pathogens: communicafing current research and technological advances. Badajoz, Spain: Formatex Research Center; 2011. p. 483-94.
6 Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179-85. https://doi.org/10.1016/S0378-1135(02)00360-7   DOI
7 Varhimo E, Varmanen P, Fallarero A, et al. Alpha- and ${\beta}$-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet Microbiol 2011; 149:381-9. https://doi.org/10.1016/j.vetmic.2010.11.010   DOI
8 Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 2008;18:1049-56. https://doi.org/10.1016/j.pnsc.2008.04.001   DOI
9 Simojoki H, Hyvonen P, Ferrer CP, Taponen S, Pyorala S. Is the biofilm formation and slime producing ability of coagulase-negative Staphylococci associated with the persistence and severity of intramammary infection? Vet Microbiol 2012;158: 344-52. https://doi.org/10.1016/j.vetmic.2012.02.031   DOI
10 Abureema S, Smooker P, Malmo J, Deighton M. Molecular epidemiology of recurrent clinical mastitis due to Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain. J Dairy Sci 2014;97:285- 90. https://doi.org/10.3168/jds.2013-7074   DOI
11 Kromker V, Reinecke F, Paduch J-H, Grabowski N. Bovine Streptococcus uberis intramammary infections and mastitis. Clin Microbial 2014;3:4. http://doi.org/10.4172/2327-5073.1000157
12 Shaheen M, Tantary H, Nabi S. A treatise on bovine mastitis: disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. Adv Dairy Res 2016;4:1. http://doi.org/10.4172/2329-888X.1000150
13 Washburn SP, White SL, Green Jr JT, Benson GA. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J Dairy Sci 2002;85:105-11. https://doi.org/10.3168/jds.S0022-0302(02)74058-7   DOI
14 Heikkila A-M, Liski E, Pyorala S, Taponen S. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 2018;101:9493-504. http://doi.org/10.3168/jds.2018-14824   DOI
15 Ismail ZB. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Vet World 2017;10:1057-62. http://doi.org/10.14202/vetworld.2017.1057-1062   DOI
16 Deb R, Kumar A, Chakraborty S, et al. Trends in diagnosis and control of bovine mastitis: a review. Pak J Biol Sci 2013;16:1653-61. http://doi.org/10.3923/pjbs.2013.1653.1661   DOI
17 Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014;6:25-64. Perspect Medicin Chem 2014; 6:25-64. https://doi.org/10.4137/PMC.S14459   DOI
18 Suriyasathaporn W, Chupia V, Sing-Lah T, Wongsawan K, Mektrirat R, Chaisri W. Increases of antibiotic resistance in excessive use of antibiotics in smallholder dairy farms in northern Thailand. Asian-Australas J Anim Sci 2012;25:1322-8. https://doi.org/10.5713/ajas.2012.12023   DOI
19 Yang W-T, Ke C-Y, Wu W-T, Lee R-P, Tseng Y-H. Effective treatment of bovine mastitis with intramammary infusion of Angelica dahurica and Rheum officinale extracts. Evid Based Complement Alternat Med 2019; 2019:7242705. https://doi. org/10.1155/2019/7242705
20 Anantasook N, Wanapat M, Cherdthong A, Gunun P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas J Anim 2013;26:820-6. https://doi.org/10.5713/ajas.2012.12689   DOI
21 Pasca C, Marghitas L, Dezmirean D, et al. Medicinal plants based products tested on pathogens isolated from mastitis milk. Molecules 2017;22:1473. https://doi.org/10.3390/molecules22091473   DOI
22 He X, Wei Z, Zhou E, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated $NF-{\kappa}B$ and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 2015;28:470-6. https://doi.org/10.1016/j.intimp.2015.07.012   DOI
23 Zhao Q, Yuan F, Liang T, et al. Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J Dairy Sci 2018;101:2415-22. https://doi.org/10.3168/jds.2017-13349   DOI
24 Klaas IC, Zadoks RN. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 2018;65 (Suppl 1):166-85. https://doi.org/10.1111/tbed.12704   DOI
25 Zhang L, Sun L, Wei R, et al. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother 2017;61:e01990-16. http://doi.org/10.1128/AAC.01990-16
26 Fu Y, Gao R, Cao Y, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated $NF-{\kappa}B$ signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2014;20:54-8. https://doi.org/10.1016/j.intimp.2014.01.024   DOI
27 Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev 2001;50:245-59. https://doi.org/10.1016/S0169-409X(01)00160-0   DOI
28 Abebe R, Hatiya H, Abera M, Megersa B, Asmare K. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet Res 2016;12:270. https://doi.org/10.1186/s12917-016-0905-3   DOI
29 Romero J, Benavides E, Meza C. Assessing financial impacts of subclinical mastitis on colombian dairy farms. Front Vet Sci 2018;5:273. http://doi.org/10.3389/fvets.2018.00273   DOI
30 Rainard P, Foucras G, Fitzgerald JR, et al. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis 2018;65(Suppl 1):149-65. https://doi.org/10.1111/tbed.12698   DOI
31 Gilbert FB, Cunha P, Jensen K, et al. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Vet Res 2013;44:40. https://doi.org/10.1186/1297-9716-44-40   DOI
32 Hamid S, Bhat MA, Mir IA, et al. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus from bovine mastitis. Vet World 2017;10:363-7. http://doi.org/10.14202/vetworld.2017.363-367   DOI
33 Oliveira M, Bexiga R, Nunes SF, Vilela CL. Invasive potential of biofilm-forming Staphylococci bovine subclinical mastitis isolates. J Vet Sci 2011;12:95-7. https://doi.org/10.4142/jvs.2011.12.1.95   DOI
34 Scali F, Camussone C, Calvinho LF, Cipolla M, Zecconi A. Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015;100:88-99. https://doi.org/10.1016/j.rvsc.2015.03.019   DOI
35 Gomes F, Saavedra MJ, Henriques M. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog Dis 2016;74:ftw006. https://doi.org/10.1093/femspd/ftw006
36 Melchior M, Vaarkamp H, Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? Vet J 2006;171:398-407. https://doi.org/10.1016/j.tvjl.2005.01.006   DOI
37 Weigel KA, Shook GE. Genetic selection for mastitis resistance. Vet Clin Food Anim Pract 2018;34:457-72. https://doi. org/10.1016/j.cvfa.2018.07.001   DOI
38 Curone G, Filipe J, Cremonesi P, et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res Vet Sci 2018;116:88-98. https://doi.org/10.1016/j.rvsc.2017.11.020   DOI
39 Waller KP, Persson Y, Nyman A-K, Stengarde L. Udder health in beef cows and its association with calf growth. Acta Vet Scand 2014;56:9. https://doi.org/10.1186/1751-0147-56-9   DOI
40 Bayril T, Yildiz AS, Akdemir F, Yalcin C, Kose M, Yilmaz O. The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australas J Anim Sci 2015;28:1133-9. http://doi.org/10.5713/ajas.14.0960   DOI
41 Zeinhom MMA, Aziz RLA, Mohammed AN, Bernabucci U. Impact of seasonal conditions on quality and pathogens content of milk in Friesian cows. Asian-Australas J Anim Sci 2016;29:1207-13. https://doi.org/10.5713/ajas.16.0143   DOI
42 Breen J. The importance of teat disinfection in mastitis control. Livestock 2019;24:122-8. http://doi.org/10.12968/live.2019. 24.3.122   DOI
43 Blowey RW, Edmondson P. Mastitis control in dairy herds. 2nd ed. Oxfordshire, UK: CAB International; 2010.
44 Freick M, Frank Y, Steinert K, et al. Mastitis vaccination using a commercial polyvalent vaccine or a herd-specific Staphylococcus aureus vaccine. Tierarztl Prax Ausg G Grosstiere Nutztiere 2016;44:219-29. http://doi.org/10.15653/TPG-150912   DOI
45 Schukken Y, Bronzo V, Locatelli C, et al. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative Staphylococci intramammary infection dynamics in 2 dairy herds. J Dairy Sci 2014;97:5250-64. https://doi.org/10.3168/jds.2014-8008   DOI
46 Bradley AJ, Breen J, Payne B, White V, Green MJ. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J Dairy Sci 2015;98:1706-20. https://doi. org/10.3168/jds.2014-8332   DOI
47 Landin H, Mork MJ, Larsson M, Waller KP. Vaccination against Staphylococcus aureus mastitis in two Swedish dairy herds. Acta Vet Scand 2015;57:81. https://doi.org/10.1186/s13028-015-0171-6   DOI
48 Ruegg PL. A 100-year review: Mastitis detection, management, and prevention. J Dairy Sci 2017;100:10381-97. https://doi.org/10.3168/jds.2017-13023   DOI
49 De Vliegher S, Fox L, Piepers S, McDougall S, Barkema H. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J Dairy Sci 2012;95:1025-40. https://doi.org/10.3168/jds.2010-4074   DOI
50 Du Preez J. Bovine mastitis therapy and why it fails: continuing education. J South Afr Vet Assoc 2000;71:a714. http://doi.org/10.4102/jsava.v71i3.714
51 Guo YF, Xu NN, Sun W, Zhao Y, Li C, Guo M. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting $NF-{\kappa}B$ activation and MMPs expression. Oncotarget 2017; 8:28481-93. https://doi.org/10.18632/onco target.16092   DOI
52 Zhang X, Wang Y, Xiao C, et al. Resveratrol inhibits LPS-induced mice mastitis through attenuating the MAPK and $NF-{\kappa}B$ signaling pathway. Microb Pathog 2017;107:462-7. https://doi.org/10.1016/j.micpath.2017.04.002   DOI
53 Gao XJ, Guo MY, Zhang ZC, et al. Bergenin plays an anti-inflammatory role via the modulation of MAPK and $NF-{\kappa}B$ signaling pathways in a mouse model of LPS-induced mastitis. Inflammation 2015;38:1142-50. https://doi.org/10.1007/s10753-014-0079-8   DOI
54 Song X, Wang T, Zhang Z, et al. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis. Inflammation 2015;38:79-88. https://doi.org/10.1007/s10753-014-0009-9   DOI
55 Wu H, Zhao G, Jiang K, et al. Puerarin exerts an antiinflammatory effect by inhibiting NF-kB and MAPK activation in Staphylococcus aureus-induced mastitis. Phytother Res 2016;30:1658-64. http://doi.org/10.1002/ptr.5666   DOI
56 Wang J, Guo C, Wei Z, et al. Morin suppresses inflammatory cytokine expression by downregulation of nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J Dairy Sci 2016;99:3016-22. https://doi.org/10.3168/jds.2015-10330   DOI
57 Zhang J, Zhang Y, Huang H, et al. Forsythoside A inhibited S. aureus stimulated inflammatory response in primary bovine mammary epithelial cells. Microb Pathog 2018;116:158-63. https://doi.org/10.1016/j.micpath.2018.01.002   DOI
58 Garcia M, Elsasser TH, Biswas D, Moyes KM. The effect of citrus-derived oil on bovine blood neutrophil function and gene expression in vitro. J Dairy Sci 2015;98:918-26. https://doi.org/10.3168/jds.2014-8450   DOI
59 Federman C, Joo J, Almario J, Salaheen S, Biswas D. Citrus-derived oil inhibits Staphylococcus aureus growth and alters its interactions with bovine mammary cells. J Dairy Sci 2016; 99:3667-74. https://doi.org/10.3168/jds.2015-10538   DOI
60 Federman C, Ma C, Biswas D. Major components of orange oil inhibit Staphylococcus aureus growth and biofilm formation, and alter its virulence factors. J Med Microbiol 2016;65:688-95. http://doi.org/10.1099/jmm.0.000286   DOI
61 Jeong CH, Cheng WN, Bae H, et al. Bee venom decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol 2017;27:1827-36. https://doi.org/10.4014/jmb.1706.06003   DOI
62 Fan J, Zeng Z, Mai K, et al. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 2016;191:65-71. https://doi.org/10.1016/j.vetmic. 2016.06.001   DOI
63 Pellegrino MS, Frola ID, Natanael B, Gobelli D, Nader-Macias MEF, Bogni CI. In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicro Prot 2019;11:74-84. https://doi.org/10.1007/s12602-017-9383-6   DOI
64 Ceotto-Vigoder H, Marques SLS, Santos INS, et al. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol 2016;121:101-14. https://doi.org/10.1111/jam.13136   DOI
65 Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017;43:583-601. https://doi.org/10.1080/1040841X.2016.1271309   DOI
66 Varela-Ortiz DF, Barboza-Corona JE, Gonzalez-Marrero J, et al. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun 2018; 42:243-50. https://doi.org/10.1007/s11259-018-9730-4   DOI
67 Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 2016;99:2053-62. https://doi.org/10.3168/jds.2015-9748   DOI
68 Felipe V, Breser ML, Bohl LP, et al. Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 2019; 126:60-7. https://doi.org/10.1016/j.ijbiomac.2018.12.159   DOI
69 Orellano MS, Isaac P, Breser ML, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 2019; 213:1-9. https://doi.org/10.1016/j.carbpol.2019.02.016   DOI
70 Lanctot S, Fustier P, Taherian AR, Bisakowski B, Zhao X, Lacasse P. Effect of intramammary infusion of chitosan hydrogels at drying-off on bovine mammary gland involution. J Dairy Sci 2017;100:2269-81. https://doi.org/10.3168/jds.2016-12087   DOI
71 Zhu H, Du M, Fox L, Zhu M-J. Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens. Food Control 2016;66:291-9. https://doi.org/10.1016/j.food cont.2016.02.013   DOI
72 Kang S, Lee JS, Lee HC, et al. Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol 2016;26:579-87. https://doi.org/10.4014/jmb.1510.10070   DOI
73 Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 2016;72:377-82. https://doi.org/10.1007/s00284-015-0958-8   DOI
74 Lakew BT, Fayera T, Ali YM. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia. Trop Anim Health Prod 2019; 51:1507-13. https://doi.org/10.1007/s11250-019-01838-w   DOI
75 Schreiner D, Ruegg P. Effects of tail docking on milk quality and cow cleanliness. J Dairy Sci 2002;85:2503-11. https://doi. org/10.3168/jds.S0022-0302(02)74333-6   DOI
76 Sharma N, Singh N, Bhadwal M. Relationship of somatic cell count and mastitis: An overview. Asian-Australas J Anim Sci 2011;24:429-38. https://doi.org/10.5713/ajas.2011.10233   DOI
77 Smith KL, Hogan JS. Environmental mastitis. Vet Clin North Am Food Anim Pract 1993; 9:489-98. https://doi.org/10.1016/S0749-0720(15)30616-2   DOI
78 Bradley AJ. Bovine mastitis: an evolving disease. Vet J 2002;164:116-28. https://doi.org/10.1053/tvjl.2002.0724   DOI
79 Piotr S, Magdalena Z, Joanna P, Barbara K, Slawomir M. Essential oils as potential anti-staphylococcal agents. Acta Vet-Beograd 2018;68:95-107. https://doi.org/10.2478/acve-2018-0008   DOI
80 Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res 2003;34:521-64. http://doi.org/10.1051/vetres:2003023   DOI
81 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84. https://doi.org/10.1038/ni.1863   DOI
82 Maturu P, Overwijk WW, Hicks J, Ekmekcioglu S, Grimm EA, Huff V. Characterization of the inflammatory microenvironment and identification of potential therapeutic targets in wilms tumors. Transl Oncol 2014;7:484-92. http://doi.org/10.1016/j.tranon.2014.05.008   DOI
83 Ezzat Alnakip M, Quintela-Baluja M, Bohme K, et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med 2014;2014: 659801. https://doi.org/10.1155/2014/659801   DOI
84 Fernandes JBC, Zanardo LG, Galvao NN, Carvalho IA, Nero LA, Moreira MAS. Escherichia coli from clinical mastitis: serotypes and virulence factors. J Vet Diagn Invest 2011;23:1146-52. https://doi.org/10.1177/1040638711425581   DOI
85 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123-40. https://doi.org/10.1038/nrmicro818   DOI
86 Elhadidy M, Zahran E. Biofilm mediates Enterococcus faecalis adhesion, invasion and survival into bovine mammary epithelial cells. Lett Appl Microbiol 2014;58:248-54. https://doi.org/10.1111/lam.12184   DOI
87 Rozanska H, Lewtak-Pilat A, Kubajka M, Weiner M. Occurrence of enterococci in mastitic cow's milk and their antimicrobial resistance. J Vet Res 2019;63:93-7. https://doi.org/10.2478/jvetres-2019-0014   DOI
88 Khan M, Khan A. Basic facts of mastitis in dairy animals: a review. Pak Vet J 2006;26:204-8.
89 Hogeveen H, Steeneveld W, Wolf CA. Production diseases reduce the efficiency of dairy production: A review of the results, methods, and approaches regarding the economics of mastitis. Annu Rev Resour Economics 2019;11:289-312. https://doi.org/10.1146/annurev-resource-100518-093954   DOI
90 Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci 2008; 86:57-65. https://doi.org/10.2527/jas.2007-0302   DOI
91 Kibebew K. Bovine mastitis: A review of causes and epidemiological point of view. J Biol Agric Healthc 2017;7:1-14.
92 Cheng WN, Jeong CH, Seo HG, Han SG. Moringa extract attenuates inflammatory responses and increases gene expression of casein in bovine mammary epithelial cells. Animals 2019;9:391. https://doi.org/10.3390/ani9070391   DOI
93 Montironi ID, Cariddi LN, Reinoso EB. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev Argent Microbiol 2016;48:210-6. https://doi.org/10.1016/j.ram.2016.04.005
94 Okmen G, Cantekin Z, Alam MI, Turkcan O, Ergun Y. Antibacterial and antioxidant activities of Liquidambar orientalis mill. various extracts against bacterial pathogens causing mastitis. Turkish J Agric-Food Sci Technol 2017;5:883-7. https://doi.org/10.24925/turjaf.v5i8.883-887.1163   DOI
95 Mushtaq S, Rather MA, Qazi PH, et al. Isolation and characterization of three benzylisoquinoline alkaloids from Thalictrum minus L. and their antibacterial activity against bovine mastitis. J Ethnopharmacol 2016;193:221-6. https://doi.org/10.1016/j.jep.2016.07.040   DOI
96 De Visscher A, Piepers S, Haesebrouck F, De Vliegher S. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. J Dairy Sci 2016; 99:6457-69. https://doi.org/10.3168/jds.2015-10458   DOI
97 Taponen S, Pyorala S. Coagulase-negative Staphylococci as cause of bovine mastitis-Not so different from Staphylococcus aureus? Vet Microbiol 2009;134:29-36. https://doi.org/10.1016/j.vetmic.2008.09.011   DOI
98 Sharma T, Das PK, Ghosh PR, Banerjee D, Mukherjee J. Association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows. Vet World 2017;10:342-7. http://doi.org/10.14202/vetworld.2017.342-347   DOI
99 Krol J, Brodziak A, Litwinczuk Z, Litwinczuk A. Effect of age and stage of lactation on whey protein content in milk of cows of different breeds. Pol J Vet Sci 2013;16:395-7. http://doi.org/10.2478/pjvs-2013-0055   DOI
100 Drackley JK. Biology of dairy cows during the transition period: The final frontier? J Dairy Sci 1999;82:2259-73. https://doi.org/10.3168/jds.S0022-0302(99)75474-3   DOI
101 Fadlelmula A, Al Dughaym AM, Mohamed GE, Al Deib MK, Al Zubaidy AJ. Bovine mastitis: epidemiological, clinical and etiological study in a Saudi Arabian large dairy farm. Bulg J Vet Med 2009;12:199-206.
102 Biggs A. Update on dry cow therapy 1. antibiotic v non-antibiotic approaches. In Practice 2017;39:255-72.   DOI
103 Down P, Bradley AJ, Breen J, Hudson C, Green MJ. Current management practices and interventions prioritised as part of a nationwide mastitis control plan. Vet Rec 2016;178:449. http://doi.org/10.1136/vr.103203   DOI
104 Hossain M, Paul S, Hossain M, Islam M, Alam M. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J Vet Sci Anim Husb 2017;4:1030.
105 Bhutto A, Murray R, Woldehiwet Z. California mastitis test scores as indicators of subclinical intra-mammary infections at the end of lactation in dairy cows. Res Vet Sci 2012;92:13-7. https://doi.org/10.1016/j.rvsc.2010.10.006   DOI
106 Ricci A, Allende A, Bolton D, et al. Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA J 2017;15: e04665. https://doi.org/10.2903/j.efsa.2017.4665
107 Fratini F, Mancini S, Turchi B, et al. A novel interpretation of the fractional inhibitory concentration index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol Res 2017;195:11-7. https://doi.org/10.1016/j.micres.2016.11.005   DOI
108 Suresh S, Sankar P, Telang AG, Kesavan M, Sarkar SN. Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing $NF-{\kappa}B$ signaling and inflammation. Int Immunopharmacol 2018;65:408-12. https://doi.org/10.1016/j.intimp.2018.10.034   DOI
109 Hashemzadeh-Cigari F, Khorvash M, Ghorbani G, et al. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J Dairy Sci 2014;97:7487-97. https://doi.org/10.3168/jds.2014-7989   DOI
110 Fratini F, Casella S, Leonardi M, et al. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014; 96:1-7. https://doi.org/10.1016/j.fitote.2014. 04.003   DOI
111 Cho B-W, Cha C-N, Lee S-M, et al. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J Vet Res 2015;55:253-7. https://doi.org/10.14405/kjvr.2015.55.4.253   DOI
112 Vasquez A, Forsgren E, Fries I, et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS One 2012;7:e33188. https://doi.org/10.1371/journal.pone.0033188   DOI
113 Wang K, Jin X-L, Shen X-G, et al. Effects of Chinese propolis in protecting bovine mammary epithelial cells against mastitis pathogens-induced cell damage. Mediators Inflamm 2016;2016:8028291. https://doi.org/10.1155/2016/8028291
114 El Hafez SMA, Ismael AB, Mahmoud MB, Elaraby A-KA. Development of new strategy for non-antibiotic therapy: bovine lactoferrin has a potent antimicrobial and immunomodulator effects. Adv Infect Dis 2013;3:185-92. http://doi.org/10.4236/aid.2013.33027   DOI
115 Piccart K, Vasquez A, Piepers S, De Vliegher S, Olofsson TC. Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. J Dairy Sci 2016;99:2940-4. https://doi.org/10.3168/jds.2015-10208   DOI
116 Bierbaum G, Sahl H-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 2009;10:2-18. http://doi.org/10.2174/138920109787048616   DOI
117 Bouchard DS, Seridan B, Saraoui T, et al. Lactic acid bacteria isolated from bovine mammary microbiota: potential allies against bovine mastitis. PloS One 2015;10:e0144831. https://doi.org/10.1371/journal.pone.0144831   DOI
118 Cao L, Wu J, Xie F, Hu S, Mo Y. Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci 2007;90:3980-5. https://doi.org/10.3168/jds.2007-0153   DOI
119 Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol 2013;11:95-105. https://doi.org/10.1038/nrmicro2937   DOI
120 Cotter PD, Hill C, Ross RP. Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88. https://doi.org/10.1038/nrmicro1273   DOI
121 De Freire Bastos MdC, Coelho MLV, da Silva Santos OC. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015;161:683-700. http://doi.org/10.1099/mic.0.082289-0   DOI
122 Field D, O'Connor R, Cotter PD, Ross RP, Hill C. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 2016;7:508. http://doi.org/10.3389/fmicb.2016.00508   DOI
123 Castelani L, Arcaro JRP, Braga JEP, et al. Activity of nisin, lipid bilayer fragments and cationic nisin-lipid nanoparticles against multidrug-resistant Staphylococcus spp. isolated from bovine mastitis. J Dairy Sci 2019;102:678-83. https://doi.org/10.3168/jds.2018-15171   DOI
124 Jorgensen H, Nordstoga A, Sviland S, et al. Streptococcus agalactiae in the environment of bovine dairy herds-rewriting the textbooks? Vet Microbiol 2016;184:64-72. https://doi.org/10.1016/j.vetmic.2015.12.014   DOI
125 Arslan S, Ozkardes F. Slime production and antibiotic susceptibility in Staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007;102:29-33. https://doi.org/10.1590/S0074-02762007000100004   DOI
126 Amini B, Baghchesaraie H, Faghihi MHO. Effect of different sub MIC concentrations of penicillin, vancomycin and ceftazidime on morphology and some biochemical properties of Staphylococcus aureus and Pseudomonas aeruginosa isolates. Iranian J Microbiol 2009;1:43-7.
127 Asli A, Brouillette E, Ster C, et al. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PloS One 2017; 12:e0176988. https://doi.org/10.1371/journal.pone.0176988   DOI
128 Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 2015; 5:6. http://doi.org/10.3389/fcimb.2015.00006   DOI
129 McAuliffe L, Ellis RJ, Miles K, Ayling RD, Nicholas RA. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 2006;152:913-22. http://doi.org/10.1099/mic.0.28604-0   DOI
130 Nicholas RA, Fox LK, Lysnyansky I. Mycoplasma mastitis in cattle: To cull or not to cull. Vet J 2016;216:142-7. https://doi.org/10.1016/j.tvjl.2016.08.001   DOI
131 Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10689-92. http://doi.org/10.1074/jbc.274.16.10689   DOI
132 Yang W, Li H, Cong X, et al. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating $NF-{\kappa}B$ and HSP72. Int Immunopharmacol 2016;40:139-45. https://doi.org/10.1016/j.intimp.2016.08.032   DOI
133 Sharma N, Singh NK, Singh OP, Pandey V, Verma PK. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas J Anim Sci 2011;24:479-84. https://doi.org/10.5713/ajas.2011.10220   DOI
134 Matsui T. Vitamin C nutrition in cattle. Asian-Australas J Anim Sci 2012;25:597-605. https://doi.org/10.5713/ajas.2012.r.01   DOI
135 Chandra G, Aggarwal A, Singh AK, Kumar M, Upadhyay RC. Effect of vitamin E and zinc supplementation on energy metabolites, lipid peroxidation, and milk production in peripartum sahiwal cows. Asian-Australas J Anim Sci 2013;26:1569-76. https://doi.org/10.5713/ajas.2012.12682   DOI
136 Guo M, Zhang N, Li D, et al. Baicalin plays an anti-inflammatory role through reducing nuclear $factor-{\kappa}B$ and p38 phosphorylation in S. aureus-induced mastitis. Int Immunopharmacol 2013;16:125-30. https://doi.org/10.1016/j.intimp.2013.03.006   DOI
137 Guo M, Cao Y, Wang T, et al. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur J Pharmacol 2014;723:481-8. https://doi.org/10.1016/j.ejphar.2013.10.032   DOI
138 Liang D, Li F, Fu Y, et al. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of $NF-{\kappa}B$ and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 2014; 37:214-22. https://doi.org/10.1007/s10753-013-9732-x   DOI
139 Wei Z, Zhou E, Guo C, et al. Thymol inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting $NF-{\kappa}B$ activation. Microb Pathog 2014;71:15-9. http://doi.org/10.1016/j.micpath.2014.01.004   DOI
140 Jin X, Wang K, Liu H, F Hu, Zhao F, Liu J. Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol. Oxid Med Cell Longev 2016;2016:2572175. https://doi.org/10.1155/2016/2572175
141 Muthaiyan A, Martin EM, Natesan S, et al. Antimicrobial effect and mode of action of terpeneless cold-pressed Valencia orange essential oil on methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2012;112:1020-33. https://doi.org/10.1111/j.1365-2672.2012.05270.x   DOI
142 Lejonklev J, Kidmose U, Jensen S, et al. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J Dairy Sci 2016;99:7898-903. https://doi.org/10.3168/jds.2016-10910   DOI