• Title/Summary/Keyword: antibacterial peptide

Search Result 150, Processing Time 0.026 seconds

Structure Elucidation and Antibacterial Activity of Oxazolomycin Family KSM-2690 B Derived from Actinomycete Collected in Jeju Island (제주도 방선균 유래 oxazolomycin 계열 KSM-2690 B의 구조 결정과 항균활성에 관한 연구)

  • Hyeongju Jeong;Jooyoung Kim;Soohyun Um;Kyuho Moon
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • KSM-2690 B (1), a peptide-polyketide hybrid compound, was discovered from an actinomycete strain (CJD 1) isolated from Dong-Baek hill on Jeju Island, Republic of Korea. The chemical structure of 1 was identified by using NMR, MS, and UV spectroscopic analyses. Careful analysis of 1D and 2D NMR data revealed that KSM-2690 (1) has an oxazole ring, a β-lactone-γ-lactam spirocycle ring, and both triene and diene structures. KSM-2690 B (1) showed inhibitory activities against E. coli at 200 ㎍/mL.

Secretagogin deficiency causes abnormal extracellular trap formation in microglia

  • Yu Gyung Kim;Do-Yeon Kim
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.34-41
    • /
    • 2024
  • Extracellular traps (ETs), primarily composed of DNA and antibacterial peptides, are mainly secreted by neutrophils to inhibit pathogen spread and eliminate microorganisms. Recent reports suggest that microglia can also secrete ETs, and these microglial ETs are associated with various neurological conditions, including nerve injury, tumor microenvironment, and ischemic stroke. However, the components and functions of microglial ETs remain underexplored. Secretagogin (Scgn), a calcium-sensor protein, plays a crucial role in the release of peptide hormones, such as insulin, in endocrine cells; however, its function in immune cells, including microglia, is not well understood. Our study demonstrated that Scgn deficiency can lead to the formation of abnormal ETs. We hypothesized that this may involve the c-Jun N-terminal kinase-myeloperoxidase pathway and autophagy.

Expression of human lactoferrin N-lobe in Pichia pastoris and its antibacterial activity (Pichia pastoris에서 사람 락토페린 N-lobe의 발현과 항균활성)

  • Won, Su-Jin;Jo, Jae-Hyung;Kim, Seung-Hwan;Kwon, Hyuk-Jin;Lee, Hyune-Hwan
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.271-279
    • /
    • 2015
  • Lactoferrin (LF) is a multifunctional, iron-binding glycoprotein found in physiological secretions of mammals. LF shows antibacterial, antiviral and antifungal activities. In the present study, a gene encoding the N-terminal lobe of human lactoferrin (hLF) was isolated, cloned and expressed in methylotrophic yeast, Pichia pastoris. The recombinant hLF-N (rhLF-N) protein was secreted into the culture medium at the level of $458{\mu}g/ml$ in 3 L fermentor. The size of purified hLF-N was estimated as 35 kDa when analyzed by SDS-PAGE and western blotting. The rhLF-N was further confirmed by immunodiffusion using the anti-hLF polyclonal antibody. The expression profile analysis by qRT-PCR showed that the relative mRNA expression of rhLF-N was maximal after 2-3 days of methanol induction and reduced gradually at 4 days. The purified rhLF-N showed broad antibacterial activities against the pathogens such as Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Burkholderia cepacia, and Salmonella typhimurium. However, rhLF-N showed relatively lower activity when compared to peptides derived from LF. In spite of this weak activity, the rhLF-N expressed in P. pastoris might be more advantageous for the industrial application, because rhLF-N is secreted into the culture medium and the production can also be increased by optimization of culture conditions.

Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans

  • Sheng, Miaomiao;Jia, Huake;Zhang, Gongyou;Zeng, Lina;Zhang, Tingting;Long, Yaohang;Lan, Jing;Hu, Zuquan;Zeng, Zhu;Wang, Bing;Liu, Hongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.689-699
    • /
    • 2020
  • Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32℃, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.

Molecular Characterization of A Glycine and Proline-rich Antibacterial Protein from Larvae of A Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam;Kim, Seong-Ryul;Kang, Heui-Yun;Yun, Eun-Young;Ahn, Mi-Young;Park, Kwan-Ho;Jeon, Jae-Pil;Kim, Mi-Ae;Kim, Nam-Jung;Hwang, Seok-Jo;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.83-85
    • /
    • 2007
  • A glycine and proline-rich antibacterial protein was cloned from larvae of a beetle, Protaetia brevitarsis. The DNAs encoded a deduced propeptide of 127 amino acid residues with predicted molecular weight of 14.0 kDa and PI of 7.89. Structural analysis of this protein indicated the presence of a recognition sequence for the cleavage site within the constitutive secretory pathway(Arg-Xaa-Lys/Arg-Arg), suggesting that mature portion(72 amino acid residues) is produced by cleavage of signal peptide and propeptide from 127 amino-acid-long precursor protein. Mature portion sequence of this protein showed 72% similarity to that of Oryctes rhinoceros Rhinocerosin and 91% to that of Holotrichia diomphalia holotricin 2. The mRNA expression was reached the highest level at 4 hrs after E. coli injection and then declined gradually.

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil;Go, Hye-Jin;Moon, Ho-Sung;Lee, Min-Jeong;Hong, Yong-Ki;Jeong, Hyun-Do;Nam, Bo-Hye;Park, Tae-Hyun;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.115-122
    • /
    • 2012
  • Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest

  • Ugras, Serpil;Sezen, Kazim;Kati, Hatice;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.

Expression of Human Lactoferricin in HC11 Cells (HC11 세포에서 인체 락토페리신의 발현)

  • Nam, Myoung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • Lactofenicin is an antibacterial peptide fragment (about 5 kD) derived from lactoferrin (80 kD) that displays the various biological functions. The production of a human lactoferricin (Lactoferricin H) in mouse HC11 mammary epithelial cells was achieved by placing its cDNA under the control of the bovine ${\beta}$-casein gene. To express lactoferricin H in this cell culture system, constructed a hybride-splice signal consisting of bovine ${\beta}$-casein intron I and rabbit ${\beta}$-globin intron II, and a DNA fragment spanning intron 8 of the bovine ${\beta}$-casein gene. Expression of lactofenicin H from this expression vector was identified by RT-PCR, northern and dot blot analysis. RT-PCR using total RNA of HC11 cells transfected with pBL1-cin expression vector yielded a product identified as having a size of the 150bp. Northern blot analysis was identified about 2.3 kb. In dot blot analysis, recombinant lactofenicin H was recognized with anti-human lactofrrnin polyclonal antibody.

  • PDF

Expression of Attacin-like Antibacterial Protein NUECIN in Pleurotus ostreatus

  • Kim, Beom-Gi;Yun, Eun-Young;Yoo, Youngbok
    • Journal of Mushroom
    • /
    • v.9 no.3
    • /
    • pp.91-95
    • /
    • 2011
  • Pleurotus ostreatus, the oyster mushroom, is one of the most important edible mushrooms. It is especially susceptible to bacterial blotch disease, which is caused by Pseudomonas tolaasii. In order to develop bacterial blotch disease-resistant transgenic mushroom, NUECIN cDNA, a gene for an antibacterial peptide cloned from Bombyx mori, was overexpressed in Pleurotus ostreatus. NUECIN cDNA was fused to the ${\beta}$-TUBULIN promoter of oyster mushroom and co-transformed with the pTRura3-2 vector into the uracil auxotrophic mutant strain. Twelve transformants containing the NUECIN gene were identified by genomic PCR and Southern blot analysis. NUECIN gene expression was confirmed by Northern blot analysis. Three transformants showed the transcriptional expression of the gene. However, we could not detect expression of the protein in the transformants. This study showed the possibility of transgenic mushroom development for disease resistance.

Functional Properties of Peptides in Mixed Whey and Soybean Extracts after Fermentation by Lactic Acid Bacteria

  • Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.