• Title/Summary/Keyword: anti-invariant submanifold

Search Result 4, Processing Time 0.022 seconds

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS

  • Yadav, Sunil Kumar;Chaubey, Sudhakar K
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2020
  • The object of the present paper is to study certain geometrical properties of the submanifolds of generalized Sasakian space-forms. We deduce some results related to the invariant and anti-invariant slant submanifolds of the generalized Sasakian spaceforms. Finally, we study the properties of the sectional curvature, totally geodesic and umbilical submanifolds of the generalized Sasakian space-forms. To prove the existence of almost semiinvariant and anti-invariant submanifolds, we provide the non-trivial examples.

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO;KIM, YOUNG-HO;LEE, CHUL-WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.189-201
    • /
    • 2005
  • In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.