• Title/Summary/Keyword: anti-corrosion test

Search Result 120, Processing Time 0.023 seconds

Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage (Burn Damage에 따른 도막의 방청성 평가)

  • Seo, ChangHo;Park, JinHwan
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2016
  • This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.

The Study on Effect of Collision Safety by Corrosion of Body Structure (차체구조물의 부식이 충돌안전도에 미치는 영향에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 2002
  • Repair were made for front pillar, center pillar and side-step panel for lightweight vehicles with head-on and 40% off-set collision of 15 km/h in a RCAR standard. The salt dilution was sprayed and the compression tests were performed for vehicles with and without anti-corrosional treatment after repair. After 764 hours of salt-dilt sprayed test without using anti-corrosion, the mean penetration depth fur corrosion was shown to be 58% of the thickness. The resulyed decrease in bending stiffness by 10∼20% can cause reduction of the residual life and crash-absorption capability for damaged vehicles. The corrosoin safety tests showed that the anti-corrosional treatment should be made to improve the safety characteristics for a or damaged car.

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

The Anti-Corrosion Properties of Coated Reinforcing Bar Using Polymer Cement Slurry (폴리머 시멘트 슬러리에 의한 철근의 방청성능)

  • 김영집;김연홍;윤보원;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.201-206
    • /
    • 2002
  • The purpose of this study is to improve the anti-corrosive properties of coated reinforcing bar using polymer cement slurry. Poymer cement slurry are prepared with three types of polymer dispersions and corrosion inhibiting admixture. And tested for corrosion accelerating tests such as immersion in NaCl 10% solution NaCl 10% solution spray, high temperature and pressure steam in condition of 8cycles, carbonation before and after, penetration of NaCl solution. From the test results, it is concluded that the anti-corrosive properties are considerably improved by coating using polymer cement slurry at surface of reinforcing bar. And this trend is marked by adding of corrosion inhibiting admixture. The difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The anti-corrosive properties of coated reinforcing bar using polymer foment slurry are improved to a great extent compared to those of plain reinforcing bar accordiy to increasing content of chloride ion in cement concrete.

  • PDF

The Study on the Safety Adhesion Test of Wet Surface for Waterproofing and Anti Corrosion Materials of Water Supply Facility (수처리 시설물에 적용되는 방수·방식재의 습윤면 부착 안정 성능평가방법에 대한 연구)

  • Choi, Su-Young;Kim, Dong-Bum;Park, Jin-Sang;Park, Wan-Goo;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.137-138
    • /
    • 2017
  • The Waterproofing and Anti corrosion materials applied to the water supply facility did not consider environment of water supply facility, thus defects occurred consistently on the site. In this study, it suggests safety adhesion test of wet surface and have a test for safety adhesion performance.

  • PDF

The Corrosion Behavior of Anti-Graffiti Polyurethane Powder Coatings

  • Rossi, S.;Fedel, M.;Deflorian, F.;Feriotti, A.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.257-264
    • /
    • 2018
  • Anti-graffiti coatings have become more important. These layers must guarantee excellent corrosion protection properties, and graffiti must be easily removable, without reducing protection and aesthetic properties. In this study, anti-graffiti and corrosion behavior of two anti-graffiti polyurethane powder coatings were studied. These layers were deposited on aluminum substrate, with two different surface finishes, smooth, and wrinkled. The action of four different removers are investigated. Graffiti were drawn on coatings by means of red acrylic spray paint. Methyl-ethyl-ketone (MEK) and a "commercial" remover were the most effective solvents, in terms of graffiti removal capability, producing limited change in aesthetical surface aspect for smooth finishing. The wrinkled surface was less resistant. Corrosion protection properties, after removal action and contact with the remover, were evaluate by electrochemical impedance spectroscopy. After approximately 5 hours, coatings were no longer protective due to formation of defects. To simulate the weathering effect, UV-B cyclic test (4 hours of UV exposure followed by 4 hours of saturated humidity at $50^{\circ}C$) were performed for 2000 hours. Gloss and color changes were measured, and electrochemical impedance spectroscopy measurements were performed after aging and graffiti removal.

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.

A Study on the Test Methods of Bond Strength in Waterproofing and Anti-corrosion Materials by Reversed Pressure (역수압 작용을 고려한 방수·방식재의 부착강도 시험방법에 관한 연구)

  • Kim, Meong-Ji;Choi, Su-Young;Choi, Sung-Min;Oh, Sung-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.232-233
    • /
    • 2014
  • Recently, water treatment facility is usually eastablished in underground, and waterproofing and anti-corrosion materials for concrete structures applied water treatment tank is developing in various ways. However, as the limit of research focused on durability improvement of top coating material, it is insufficient to study on the adhesion strength between the concrete surface and primer. Therefore, there is to confirm the adhesion of between concrete surface and the three primers used as anti-corrosion waterproofing materials, and to investigate the properties of adhesion strength according to the condition such as wet codition and water pressure condition of the concrete surface in this study.

  • PDF

Methodological approach of evaluation on prefabrication primers for steel structures

  • Chung, Sung-Wook;Hyun, Jeong-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.707-717
    • /
    • 2021
  • To the date, shipbuilding companies have applied shop primer coating which protects the steel surface from global oxidization in environment. Proper shop primer requires either anti-corrosion ability during construction or anti-porosity ability during welding, and those properties contradict to each other. This report tried to derive an optimizing parameter on these conflicting properties to select a proper shop primer. First, sufficient amounts of the natural salt spray tests were carried out to achieve a series of data for the anti-corrosion ability. Second, lots of T-joint fillet welding test were performed to evaluate the trapped porosity formed in the weld pool. According to the experimental data, we could achieve either the rust-formation rate or the porosity-formation rate, then, each rate was generalized as formulae. Then, we tried to combine these conflicting properties to decide an optimum shop primer.