• Title/Summary/Keyword: anti-cancer active compound

Search Result 26, Processing Time 0.024 seconds

The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo

  • Jiang, Wei;Huang, Yong;Wang, Jing-Peng;Yu, Xiao-Yun;Zhang, Lin-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4615-4619
    • /
    • 2013
  • Background: Artesunate, extracted from Artemisia annua, has been proven to have anti-cancer potential. Allicin, diallyl thiosulfinate, the main biologically active compound derived from garlic, is also of interest in cancer treatment research. This object of this report was to document synergistic effects of artesunate combined with allicin on osteosarcoma cell lines in vitro and in vivo. Methods: After treatment with artesunate and allicin at various concentrations, the viability of osteosarcoma cells was analyzed by MTT method, with assessment of invasion and motility, colony formation and apoptosis. Western Blotting was performed to determine the expression of caspase-3/9, and activity was also detected after drug treatment. Moreover, in a nude mouse model established with orthotopic xenograft tumors, tumor weight and volume were monitored after drug administration via the intraperitoneal (i.p.) route. Results: The viability of osteosarcoma cells in the combination group was significantly decreased in a concentration and time dependent manner; moreover, invasion, motility and colony formation ability were significantly suppressed and the apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement in the combination group. Furthermore, suppression of tumor growth was evident in vivo. Conclusion: Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.

Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides (사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과)

  • Min, Jin Woo;Kim, Hye-Jin;Joo, Kwang-Sik;Kang, Hee-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • Ginsenosides (ginseng saponin) as the one of important pharmaceutical compounds of ginseng and is responsible for the pharmacological and biological activities. These ginsenoside produces diverse small molecules ginsenoside which have more pharmacological activities including anti-wrinkle, anti-cancer and anti-oxidant effects. In the present study, we isolated bacteria using esculin agar, to produce ${\beta}$-glucosidase, and we focused on the bio-transformation of ginsenoside. Phylogenetic tree analysis was performed by comparing the 16S rRNA sequences; we identified the strain as Stenotrophomonas rhizopilae strain GFC09. In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside $Rb_1$. Bioconversion of ginsenoside $Rb_1$ were analyzed using TLC and HPLC. The crude enzyme hydrolyzed the ginsenoside $Rb_1$ along the following pathway: LB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$ into compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. The structure of the hydrolyzed metabolites were identified by NMR. The activity screening tests showed that the conversion product induced the production of type I procollagen in a dose-dependent manner. These results suggested that hydrolyzed ginseng product containing the ginsenoside $F_2$ and compound K could be useful as an active ingredient for wrinkle-care cosmetics.

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Anti-Angiogenic Activities of Gliotoxin and 1ts Methylthio-Derivative, Fungal Metabolites

  • Lee, Hee-Jung;Lee, Jeong-Hyung;Hwang, Bang-Yeon;Kim, Hang-Sub;Lee, Jung-Joon
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.397-401
    • /
    • 2001
  • In the search for new naturally occurring angiogenic inhibitory we found that culture broths from two unidentified fungal strains exerted potent inhibitory activities on capillary-like tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Two active compounds were isolated by bioassay-guided separation and their structures were identified as gliotoxin (1) and its derivative methylthiogliotoxin (2) by spectroscopic analyses. These compounds significantly inhibited the migration of HUVEC assessed by in vitro wounding migration assay and exhibited at least 10 times more potent inhibition of proliferation of HUVECs as compared with that of cancer cell lines such as HeLa, MCF-7, and KB 3-1 cells. Especially, gliotoxin having disulfide group exerted more potent activities than methylthiogliotoxin, suggesting that gliotoxin could be a useful compound for further study as an anti-angiogenic agent.

  • PDF

Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., (동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향)

  • Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.607-614
    • /
    • 2015
  • Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.

Inhibitory Effects of α-Pinene on Hepatoma Carcinoma Cell Proliferation

  • Chen, Wei-Qiang;Xu, Bin;Mao, Jian-Wen;Wei, Feng-Xiang;Li, Ming;Liu, Tao;Jin, Xiao-Bao;Zhang, Li-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3293-3297
    • /
    • 2014
  • Background: Pine needle oil from crude extract of pine needles has anti-tumor effects, but the effective component is not known. Methods: In the present study, compounds from a steam distillation extract of pine needles were isolated and characterized. Alpha-pinene was identified as an active anti-proliferative compound on hepatoma carcinoma BEL-7402 cells using the MTT assay. Results: Further experiments showed that ${\alpha}$-pinene inhibited BEL-7402 cells by arresting cell growth in the G2/M phase of the cell cycle, downregulating Cdc25C mRNA and protein expression, and reducing cycle dependence on kinase 1(CDK1) activity. Conclusion: Taken together, these findings indicate that ${\alpha}$-pinene may be useful as a potential anti-tumor drug.

Artemisinin attenuates platelet-derived growth factor BB-induced migration of vascular smooth muscle cells

  • Lee, Kang Pa;Park, Eun-Seok;Kim, Dae-Eun;Park, In-Sik;Kim, Jin Tack;Hong, Heeok
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.521-525
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Artemisinin (AT), an active compound in Arternisia annua, is well known as an anti-malaria drug. It is also known to have several effects including anti-oxidant, anti-inflammation, and anti-cancer activities. To date, the effect of AT on vascular disorders has not been studied. In this study, we investigated the effects of AT on the migration and proliferation of vascular smooth muscle cells (VSMC) stimulated by platelet-derived growth factor BB (PDGF-BB). MATERIALS/METHODS: Aortic smooth muscle cells were isolated from Sprague-Dawley rats. PDGF-BB stimulated VSMC migration was measured by the scratch wound healing assay and the Boyden chamber assay. Cell viability was determined by using an EZ-Cytox Cell Viability Assay Kit. The production of reactive oxygen species (ROS) in PDGF-BB stimulated VSMC was measured through $H_2DCF$-DA staining. We also determined the expression levels of signal proteins relevant to ROS, including measures of extracellular signal-regulated kinase (ERK) 1/2 measured by western blot analysis and matrix metalloproteinase (MMP) 9 measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: AT ($10{\mu}M$ and $30{\mu}M$) significantly reduced the proliferation and migration of PDGF-BB stimulated VSMC in a dose-dependent manner. The production of ROS, normally induced by PDGF-BB, is reduced by treatment with AT at both concentrations. PDGF-BB stimulated VSMC treated with AT ($10{\mu}M$ and $30{\mu}M$) have reduced phosphorylation of ERK1/2 and inhibited MMP9 expression compared to untreated PDGF-BB stimulated VSMC. CONCLUSIONS: We suggest, based on these results, that AT may exert an anti-atherosclerotic effect on PDGF-BB stimulated VSMCs by inhibiting their proliferation and migration through down-regulation of ERK1/2 and MMP9 phosphorylation.

Isolation and Identification of a Novel Anticancer Compound from Solanum nigrum (용규(Solanum nigrum)에서 HT29 세포에 대한 신규 항암 활성 단일 물질 분리)

  • Yun, Hee Jung;Jung, Jong Hun;Hyun, Sook Kyung;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.234-241
    • /
    • 2014
  • To identify and isolate anticancer active compounds from Solanum nigrum, S. nigrum was extracted with MeOH and then fractionated with various organic solvents ($CH_2Cl_2$, EtOAc, n-BuOH, and $H_2O$). The cytotoxic effects of the MeOH extracts from S. nigrum and its organic solvent-soluble fractions were also tested in HT29 cells. All the MeOH extracts of S. nigrum and its organic-solvent extracts induced cytotoxicity in the HT29 cells. Among the extracts, $H_2O$ was the most effective. The $H_2O$ extract was purified further by repeated silica gel, Sephadex LH-20, Diaion HP- 20, and RP-18 column chromatography. An active anticancer compound, Des-N-26-methylene-dihydrotomatidine, was isolated with a molecular weight of 416 and a molecular formula of $C_{28}H_{48}O_2$. Analysis of the cytotoxic effects of Des-N-26-methylene-dihydrotomatidine on the HT29 cells compared to those of tomatine and tomatidine are similar in its structure, is higher than tomatidine above the 40 ${\mu}g/ml$ concentration, but lower than tomatine. This is the first study to describe the anticancer activity of Des-N-26-methylene-dihydrotomatidin, isolated from S. nigrum. Des-N-26- methylene-dihydrotomatidine seems to have potential as a natural bioactive compound.

Anti-Cancer Activity of T-Type Calcium Channel Blocker In Vivo

  • Park, Hang-Ah;Jung, Soo-Yeon;Lee, So-Hyung;Kang, Han-Byul;Min, Min-Sik;Kim, Jung-Ahn;Choo, Dong-Joon;Oh, Chun-Rim;Kim, Young-Deuk;Lee, Kyung-Tae;Lee, Jae-Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3353-3358
    • /
    • 2010
  • 3,4-Dihydroquinazoline 1 as T-type calcium channel blocker was in vivo evaluated against A549 xenograft in BALB/c-nu Slc mice, which exhibited 54% tumor growth inhibition through oral administration of 8 mg/kg of body weight and was slightly less active than doxorubicin (68%). In addition, this compound was also profiled for its acute toxicity to ICR mice to afford oral $LD_{50}$ value of 1,038 mg/kg of body weight.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.