• Title/Summary/Keyword: anti-apoptosis engineering

Search Result 104, Processing Time 0.023 seconds

Lysophosphatidic acid improves development of porcine somatic cell nuclear transfer embryos

  • Ling Sun;Tao Lin;Jae Eun Lee;So Yeon Kim;Ying Bai;Dong Il Jin
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.726-739
    • /
    • 2024
  • This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

Proteolysis of $\beta$-Catenin in Apoptotic Jurkat Cells

  • Hwang, Sang-Gu;Park, Jeong-Uck;Lee, Hyung-Chul;Joo, Woo-Hong;Cho, Yong-Kweon;Moon, Ja-Young
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • ${\beta}$-catenin, which plays a critical role in both the cytoskeleton and in transcriptional regulation in variousadherent cell types, undergoes degradation during adherent cell apoptosis. Although ${\beta}$-catenin has been reported to be present in Jurkat T-acute lymphoblastic leukemia cells, the regulation of ${\beta}$-catenin in hematologic malignancies have not been examined. The data presented here demonstrate that treatment of the T cell leukemia Jurkat iwht the apoptosis inducer anti-Fas induced proteolytic cleavage of ${\beta}$-catenin. ${\beta}$-catenin was cleaved at both the N- and C-terminus after anti-Fas treatment. Cleavage of intact ${\beta}$-catenin was completely inhibited by caspase selective protease inhibitors. These data demonstrate that ${\beta}$ -catenin proteolysis is triggered by the cross-linking of the Fas receptor on Jurkat cells and subsequent activation of caspase protease. There was a clear accumulatio of the large proteolytic fragment in Jurkat cells treated with lactacystin of ALLM. These are potent inhibitors of proteasome and calpain. these results suggest that both the proteasome and clapain may recognize the large ${\beta}$-catenin fragment as a substrate fot further degradation and that these pathewasy may act downstream of scapase in response to Fas receptor activation. Therefore, we suggest that ${\beta}$-catenin may play a role in promoting Jurkat survival.

Cytoprotective effect of the processed Gardeniae Fructus on oxidative stress-induced gastric epithelial cells (산화스트레스를 유발한 위 상피세포에서 수치 치자의 세포 보호 효과)

  • Jong Rok, Lee;Sang Chan, Kim;Sook Jahr, Park
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.21-30
    • /
    • 2023
  • Objective : Gardeniae Fructus (GF) has bitter and cold nature. Thus, it has been traditionally prescribed in processed form roasted with ginger juice for patients with a weak stomach. This study investigated the effects of processed GF in tert-butyl hydroperoxide (tBHP)-treated gastric epithelial cells. Methods : Processed GF was made by applying 40% ginger juice or 10% ethanol for 24 h and then roasting at 150℃ for 5 minutes. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) was monitored by flow cytometry using the membrane permeable fluorescent dye Rh123. Protein expression was measured by Western blot analysis. Results : Cell viability was reduced by tBHP and restored by ethanol extract of GF (GFE). In the TUNEL assay, it was found that cell death by tBHP was due to apoptosis, and GFE had an anti-apoptotic effect. Processed GF roasted with ginger juice showed the best anti-apoptotic effect. Processed GF also inhibited MMP loss and restored tBHP-induced changes in expression levels of apoptosis-related proteins. Increased ROS production and GSH depletion after tBHP treatment were significantly reduced by processed GF. In addition, tBHP-induced activation of mitogen-activated protein kinase (MAPK) was inhibited by processed GF. Conclusion : These results demonstrate that the processed GF is able to protect gastric epithelial cells from oxidative stress-induced cell death with antiapoptotic and antioxidant activity. In addition, it shows that the processing of GF, which have been traditionally used for gastrointestinal protection, partially have scientific validity.

BmKn-2 Scorpion Venom Peptide for Killing Oral Cancer Cells by Apoptosis

  • Tong-ngam, Pirut;Roytrakul, Sittiruk;Sritanaudomchai, Hathaitip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2807-2811
    • /
    • 2015
  • Scorpion venom peptides recently have attracted attention as alternative chemotherapeutic agents that may overcome the limitations of current drugs, providing specific cytotoxicity for cancer cells with an ability to bypass multidrug-resistance mechanisms, additive effects in combination therapy and safety. In the present study, BmKn-2 scorpion venom peptide and its derivatives were chosen for assessment of anticancer activities. BmKn-2 was identified as the most effective against human oral squamous cells carcinoma cell line (HSC-4) by screening assays with an $IC_{50}$ value of $29{\mu}g/ml$. The BmKn-2 peptide killed HSC-4 cells through induction of apoptosis, as confirmed by phase contrast microscopy and RT-PCR techniques. Typical morphological features of apoptosis including cell shrinkage and rounding characteristics were observed in treated HSC-4 cells. The results were further confirmed by increased expression of pro-apoptotic genes such as caspase-3, -7, and -9 but decrease mRNA level of anti-apoptotic BCL-2 in BmKn-2 treated cells, as determined by RT-PCR assay. In summary, the BmKn-2 scorpion venom peptide demonstrates specific membrane binding, growth inhibition and apoptogenic activity against human oral cancer cells.

Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng

  • Hong, Yo Han;Kim, Donghyun;Nam, Gibaeg;Yoo, Sulgi;Han, Sang Yun;Jeong, Seong-Gu;Kim, Eunji;Jeong, Deok;Yoon, Keejung;Kim, Sunggyu;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Background: BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. Methods: We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. Results: Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). Conclusion: Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.

Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage

  • Song, Juhyun;Jun, Mira;Ahn, Mok-Ryeon;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.377-384
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS: mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS: Pre-treatment with resveratrol ($25-200{\mu}M$) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS: miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.

Anti-Apoptotic Effects of Catalpol on Preimplantaion Porcine Embryos

  • Lee, Yong-Hee;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Do, Geon-Yeop;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.30 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Catalpol, an iridoid glucoside, isolated from the root of Rehmannia glutinosa Libosch. It possesses a broad range of biological and pharmacological activity including anti-tumor, anti-inflammation and anti-oxidant by acting as a free radical scavenger. Therefore, in this study, the effects of catalpol on blastocyst development, expression levels of reactive oxygen species (ROS) and apoptotic index were investigated in porcine embryos. After in vitro maturation and fertilization, porcine embryos were cultured for 6 days in porcine zygote medium 3 (PZM-3) supplemented with catalpol (0, 100, 200 and $400{\mu}M$, respectively). Blastocyst development not significantly improved in the catalpol treated group when compared with control group. Otherwise, the intracelluar levels of ROS were decreased and the numbers of apoptotic nuclei were reduced in the catalpol ($100{\mu}M$) treated porcine blastocysts (P<0.05). On the other hand, blastocyst development was significantly improved in the catalpol ($100{\mu}M$) treated group when compared with the untreated catalpol group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress (P<0.05). Otherwise, the intracellular levels of ROS in catalpol ($100{\mu}M$) treated group were significantly decreased in the untreated catalpol group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress (P<0.05). Furthermore, the total cell numbers of blastocysts were significantly increased (P<0.05) in the catalpol ($100{\mu}M$) treated group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress, whereas numbers of apoptoic nuclei were significantly reduced (P<0.05). In conclusion, our results indicate that treatment of catalpol may have important implications for improving developmental competence and preimplantation quality of porcine embryos through its anti-oxidant and anti-apoptotic effect.

Anti-apoptotic Effect of Steam Exploded Quercus variabilis

  • Jo, Jong-Soo;Jung, Ji Young;Nam, Jeong Bin;Park, Hyung Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.224-237
    • /
    • 2015
  • We hypothesized that the extract from steam exploded Q. variabilis might be cytoprotective for tenofibroblasts cells during oxidative stress. In the present study, the extracts obtained from steam exploded (severity log Ro 4.68) Q. variabilis contained high quantities of phenolics and flavonoids contents. Also, the extracts appear to have, on these tenofibroblasts, a protective effect against oxidative stress. Tenofibroblasts cells incubated with the extracts and stressed with $H_2O_2$ showed an increase in cell viability by MTT assay. The extracts is found to inhibit $H_2O_2$-induced apoptosis in tenofibroblasts cells, as shown by Annexin V/PI double staining analysis. Western blot data showed that in the extracts/$H_2O_2$-treated cells, the extracts inhibited the $H_2O_2$-dependent phosphorylation of ERK and p38. From these results, it is suggested that the extracts showed the protective effect on $H_2O_2$-mediated oxidative stress. The main chemical compounds of the extract was identified as 1,8-cineole by GC-MS analysis. The anti-apoptosis activity is accordingly believed to be attributable to the 1,8-cineole.

Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1

  • Cheol Park;Hyun Hwangbo;Sung Ok Kim;Jeong Sook Noh;Shin-Hyung Park;Su Hyun Hong;Sang Hoon Hong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.596-605
    • /
    • 2024
  • Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.

Effect of Bcl-2 Inhibitor Treatment on Embryo Developmental Competence, Apoptosis and ER-stress in Pigs (Bcl-2의 저해제 처리에 따른 돼지 수정란의 배발달 능력, 세포 사멸 및 소포체 스트레스 양상)

  • Hong, Joo-Hee;Min, Sung-Hun;Lee, Enok;Son, Hyeong-Hoon;Yeon, Ji-Yeong;Park, Humdai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • The key regulators of apoptosis are the interacting protein of the Bcl-2 family. Bcl-2, an important member of this family, blocks cytochrome C release by sequestering pro-apoptotic BH3-only proteins such as Bid, Bad, Bax and Bim. The pro-survival family members (Bcl-2, Bcl-XL, Bcl-W) are critical for cell survival, since loss of any of them causes cell death in certain cell type. However, its role during early porcine embryonic development is not sufficient. In this study, we traced the effects of Bcl-2 inhibitor, ABT-737, on early porcine embryonic development. We also investigated several indicators of developmental potential, including gene expression (apoptosis-related genes) and apoptosis, which are affected by ABT-737. Porcine embryos were cultured in the PZM-3 medium with or without ABT-737 for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without ABT-737 ($14.7{\pm}3.0$ vs $30.3{\pm}4.8%$, p<0.05). TUNEL assay showed that the number of containing fragmented DNA at the blastocyst stage increased in the ABT-737 treated group compared with control (4.7 vs 3.7, p<0.05). The mRNA expression of the pro-apoptotic gene Bax increased in ABT-737 treated group (p<0.05), whereas expressions of the anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-XL, Bcl-W) decreased (p<0.05). Also, expressions of the ER stress indicator genes (GRP78, XBP-1 and sXBP-1) increased in ABT-737 treated group (p<0.05). In conclusion, Bcl-2 is closely associated with of apoptosis- and ER stress-related genes expressions and developmental potential in pig embryos.