• Title/Summary/Keyword: anti-adipogenic effect

Search Result 128, Processing Time 0.021 seconds

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root (하늘타리(Trichosanthes kirilowii Maxim.) 뿌리 에탄올 추출물의 3T3-L1 지방세포 분화 억제 융합연구)

  • Kim, Sung Ok;Jeung, Ji-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.

Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells (3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Chung, Sang-In;Cho, Soo-Hyun;Yoon, Yoo-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Baicalin, a flavonoid, was shown to have diverse effects such as anti-inflammatory, anti-cancer, anti-viral, anti-bacterial and others. Recently, we found that the baicalin inhibits adipogenesis through the modulations of anti-adipogenic and pro-adipogenic factors of the adipogenesis pathway. In the present study, we further characterized the molecular mechanism of the anti-adipogenic effect of baicalin using microarray technology. Microarray analyses were conducted to analyze the gene expression profiles during the differentiation time course (0 day, 2 day, 4 day and 7 day) in 3T3-L1 cells with or without baicalin treatment. We identified a total of 3972 genes of which expressions were changed more than 2 fold. These 3972 genes were further analyzed using hierarchical clustering analysis, resulting in 20 clusters. Four clusters among 20 showed clearly up-regulated expression patterns (cluster 8 and cluster 10) or clearly down-regulated expression patterns (cluster 12 and cluster 14) by baicalin treatment for over-all differentiation period. The cluster 8 and cluster 10 included many genes which enhance cell proliferation or inhibit adipogenesis. On the other hand, the cluster 12 and cluster 14 included many genes which are related with proliferation inhibition, cell cycle arrest, cell growth suppression or adipogenesis induction. In conclusion, these data provide detailed information on the molecular mechanism of baicalin-induced inhibition of adipogenesis.

Anti-obesity Effect of Salsola collina Ethanol Extract (솔장다리 추출물의 항비만 효과)

  • Jin, Kyong-Suk;Lee, Su Hyeon;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.888-895
    • /
    • 2017
  • Salsola collina (S. collina) is an annual plant widely distributed in drought and semi-drought areas, which has been used for a long time as a kind of folk remedy in traditional Chinese medicine for the treatment of hypertension. Previously, the anti-oxidative and anti-cancer activities of S. collina were elucidated in our research group. In this study, the anti-obesity activities of S. collina ethanol extract (SCEE) were evaluated using a pancreatic lipase enzyme inhibition assay and cell culture model. The results showed that SCEE effectively suppressed pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCEE significantly suppressed adipocyte differentiation, lipid accumulation, and triglyceride (TG) content, and triggered lipolysis on insulin, dexamethasone, and 3-isobutyl-l-methylxanthine-treated 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Its anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene, as well as protein expressions. Taken together, these results offer the important new insight that S. collina possesses anti-obesity properties, such as pancreatic lipase inhibition and anti-adipogenic and lipolysis effects through the modulation of their upstream signaling pathway. It could become a promising source in the field of nutraceuticals, and the identification of active compounds that confer the biological activities of SCEE may be needed.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

Anti-Oxidative and Anti-Obesity Effects of Amomum Cardamomum L. Extract (백두구 추출물의 항산화 및 항비만 효과)

  • Park, Jung Ae;Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • In this study, the anti-oxidative and anti-obesity activities of Amomum cardamomum L. methanol extract (ACME) were evaluated using DPPH radical scavenging activity assay, pancreatic lipase enzyme inhibition assay, and the cell culture model system. ACME exhibited DPPH radical scavenging activities dose-dependently, with $IC_{50}$ of DPPH radical scavenging activities of ACME being $25.15{\mu}g/ml$. Furthermore, ACME effectively suppressed pancreatic lipase enzyme activity dose-dependently. ACME also significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents, and triggered lipolysis activity on 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. Their anti-obesity effect was modulated by the cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Taken together, these results provide an important new insight that A. cardamomum L. possesses anti-oxidative and anti-obesity activities such as pancreatic lipase inhibition, anti-adipogenic, and lipolysis effects. There is therefore potential for its use as a promising component in the field of nutraceuticals and the identification of the active compounds that confer the anti-oxidative and anti-obesity activities of ACME might be an appropriate next step.

Inhibitory Effect of Triticum aestivum Ethanol Extract on Lipid Accumulation in 3T3-L1 Preadipocytes (3T3-L1 세포에서 소맥엽 에탄올추출물의 지질생성 억제효과)

  • Lee, Sun-Hee;Xin, Mingjie;Luyen, Bui Thi Thuy;Cha, Ji-Yun;Im, Ji-Young;Kwon, Se-Uk;Lim, Sung-Won;Suh, Joo-Won;Kim, Young-Ho;Kim, Dae-Ki;Lee, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.478-484
    • /
    • 2011
  • Non-alcoholic fatty liver disease is known to be frequently associated with obesity and type 2 diabetes. We examined the effects of EtOH extracts from Triticum aestivum on lipid accumulation during the differentiation of 3T3-L1 preadipocytes to screening the candidate materials in preventing non-alcoholic fatty liver disease. The lipid level in adipocytes was determined by Oil Red O staining. The treatment of 50% ethanol, but not water and 100% ethanol extracts, from Triticum aestivum at concentration of 0.5 $mg/ml$ inhibited lipid accumulation in 3T3-L1 cells, revealing no cell toxicity. Thus, the fractions of $CH_2Cl_2$, EtOAc and BuOH were separated from 50% EtOH extract to characterize anti-adipogenic effect. The $CH_2Cl_2$ fraction at concentration of $50{\mu}g/ml$ effectively inhibited the lipid accumulation in the adipocytes compared to those of EtOAc and BuOH at concentration of $50{\mu}g/ml$. The intracellular triglyceride accumulation also was significantly reduced by treatment of $CH_2Cl_2$ fraction in concentration-dependent manner. Western blot analysis showed that the $CH_2Cl_2$ fraction attenuated the intracelluar level of fatty acid synthase(FAS) accompanied by attenuated expression of Peroxidase proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) adipogenic transcription factor. These results suggest that $CH_2Cl_2$ fraction from 50% EtOH extract of Triticum aestivum may has the potent anti-adipogenic effects by inhibiting the transactivation of $PPAR{\gamma}$.

The Anti-Adipogenic Activity of a New Cultivar, Pleurotus eryngii var. ferulae 'Beesan No. 2', through Down-Regulation of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kang, Min-Jae;Kim, Keun Ki;Son, Byoung Yil;Nam, Soo-Wan;Shin, Pyung-Gyun;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1836-1844
    • /
    • 2016
  • Adipogenesis is one of the cellular processes and a highly controlled program. Nowadays, inhibition of adipogenesis has received attention as an effective way to regulate obesity. In the current study, we investigated the inhibition effect of a chloroform extract of Pleurotus eryngii var. ferulae 'Beesan No. 2' (CEBT) on adipogenesis in 3T3-L1 murine preadipocytes. Pleurotus eryngii var. ferulae is one of many varieties of King oyster mushroom and has been reported to have various biological activities, including antitumor and anti-inflammation effects. Biological activities of 'Beesan No. 2', a new cultivar of Pleurotus eryngii var. ferulae, have not yet been reported. In this study, we found that CEBT suppressed adipogenesis in 3T3-L1 cells through inhibition of key adipogenic transcription factors, such as peroxisome proliferatoractivated receptor ${\gamma}$ and CCAAT/enhancer binding protein ${\alpha}$. Additionally, CEBT reduced the expression of the IRS/PI3K/Akt signaling pathway and its downstream factors, including mammalian target of rapamycin and p70S6 kinase, which stimulate adipogenesis. Furthermore, ${\beta}-catenin$, a suppressor of adipogenesis, was increased in CEBT-treated cells. These results indicate that Pleurotus eryngii var. ferulae 'Beesan No. 2' effectively inhibited adipogenesis, so this mushroom has potential as an anti-obesity food and drug.

Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

  • Zhang, Xian-Hua;Huang, Bo;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 2012
  • Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.

Inhibitory Effects of Rosa rugosa Crude Extract and Solvent Fractions on Adipogenic Differentiation of 3T3-L1 Preadipocytes (해당화 추출물이 3T3-L1 지방세포 분화에 미치는 영향)

  • Lee, Hyunjung;Yang, Jiho;Choi, Mi-na;Jeon, Seongeun;Zhou, Xianrong;Oh, Jung Hwan;Karadeniz, Fatih;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.979-988
    • /
    • 2022
  • Halophytes have been reported to possess a variety of physiological activities, such as anti-cancer, anti-oxidant, anti-diabetes, anti-inflammatory, and anti-obesity. Studies on the roots of the halophyte Rosa rugosa, in particular, have shown a variety of physiological activities and are known to be effective for nursing diabetic complications in traditional Korean medicine. In this study, the effect of R. rugosa on adipogenesis was investigated in 3T3-L1 pre-adipocytes treated with crude extract and solvent fractions (H2O, n-BuOH, 85% aq. MeOH, and n-Hex) obtained from R. rugosa roots. Treatment with extract and the solvent fractions inhibited the formation of intracellular lipid droplets in differentiated 3T3-L1 adipocytes compared to the untreated group. In particular, n-BuOH and 85% aq. MeOH fractions effectively decreased the expression of adipogenic transcription factors: peroxisome proliferator activated receptor-γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1c (SREBP1c) in both mRNA and protein levels. In conclusion, these results suggest that R. rugosa contains anti-adipogenic molecules that can be utilized as a nutraceutical against obesity. Further refining of n-BuOH and 85% aq. MeOH fractions and analysis of their action mechanisms could yield potential therapeutic agents with anti-adipogenic effects.

Inhibition of Adipocyte Differentiation by MeOH Extract from Carduus crispus through ERK and p38 MAPK Pathways

  • Lee, Eun-Jeong;Joo, Eun-Ji;Hong, Yoo-Na;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.17 no.4
    • /
    • pp.273-278
    • /
    • 2011
  • In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased fat accumulation by inhibiting adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner. In MTT assays and on PI-staining, methanol extract of C. crispus inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The anti-adipogenic effect of the Carduus extract seemed to be associated with the upregulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of obesity.