Browse > Article
http://dx.doi.org/10.15207/JKCS.2019.10.3.127

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root  

Kim, Sung Ok (Department of Food Science & Biotechnology (Nutrition), Kyungsung University)
Jeung, Ji-Suk (Wild Flower Institute, Gurye-gun Agricultural Center)
Publication Information
Journal of the Korea Convergence Society / v.10, no.3, 2019 , pp. 127-133 More about this Journal
Abstract
The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.
Keywords
Trichosanthes kirilowii Maxim.; anti-obesity; adipocytes; anti-adipogenic activity; convergence therapeutic functional agent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Kitajima & Y. Tanaka. (1989). Studies on the constituents of trichosanthes root. I. Constituents of roots of Trichosanthes kirilowii Maxim. var. japonicum Kitam. Yakugaku zasshi. 109(4), 250-255. DOI : None   DOI
2 Y. Ozaki, L. Xing & M. Satake. (1996). Antiinflammatory effect of Trichosanthes kirilowii Maxim. and its effective parts. Biol Pharm Bull. 19(8), 1046-1048. DOI : 10.1248/bpb.19.1046   DOI
3 T. C. Otto, M. D. Lane (2005). Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 40(4), 229-42. DOI : 10.1080/10409230591008189   DOI
4 S. Ambati, J. Y. Yang, S. Rayalam, H. J. Park, M. A. Della-Fera & C. A. Baile. (2009). Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis. Phytother Res. 23(4), 513-518. DOI : 10.1002/ptr.2663   DOI
5 J. A. Lee, Y. J. Park, W. S. Jeong & S. S. Hong. (2017). Anti-obesity effect of Amomum taso-ko ethanol extract in 3T3-L1 adipocytes. J Appl Bio Chem. 60(1), 23-28. DOI : https://doi.org/10.3839/jabc.2017.005   DOI
6 B. B. Zhang, G. Zhou & C. Li. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9(5), 407-416. DOI : 10.1016/j.cmet.2009.03.012   DOI
7 L. Orci, W. S. Cook, M. Ravazzola, M. Y. Wang, B. H. Park, R. Montesano & R. H. Unger (2004). Rapid transformation of white adipocytes into fat-oxidizing machines. Proc. Natl. Acad. Sci. USA 101(7), 2058-2063. DOI: 10.1073/pnas.0308258100   DOI
8 M. M. Gonzalez-Barroso, A. Anedda, E. Gallardo-Vara, M. Redondo-Horcajo, L. Rodriguez-Sanchez & E. Rial. (2012). Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial ${\beta}$-oxidation. Biochim Biophys Acta. 1817(10), 1768-1775. DOI : 10.1016/j.bbabio.2012.02.019   DOI
9 D. G. Hardie. (2004). The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci 117(23), 5479-5487. DOI : 10.1242/jcs.01540   DOI
10 OECD. (2018). OECD Health Statistics. http://www.oecd.org
11 The Ministry of Health and Welfare(MOHW). Korea Centers for Disease Control & Prevention Korea National Health and Nutrition Examination Survey (2017), https://knhanes.cdc.go.kr/knhanes/sub05/sub05_01_view.do.
12 Guidelines for Obesity therapy (2018). Korean Society for the Study of Obesity (KSSO). http://www.kosso.or.kr/file/file180614.pdf
13 X. M. Fan, G. Chen, Y. Sha, X. Lu, M. Shen, H. M. Ma, & Y. H. Pei. (2012). Chemical constituents from the fruits of Trichosanthes kirilowii. J Asian Nat Prod Res. 14(6), 528-532. DOI : 10.1080/10286020.2012.672410   DOI
14 Y. Huang, P. He, K. P. Bader, A. Radunz & G. H. Schmid. (2000). Seeds of Trichosanthes kirilowii, an energy-rich diet. Zeitschrift fur Naturforschung. C J biosci. 55(3), 189-194. DOI : 10.1515/znc-2000-3-409
15 T. Akihisa, W. C. M. C. Kokke, J. A. Krause, T. Tamura, D. S. Eggleston, S. I. Katayama, Y. Kimura & T. Tamura. (1992). 5-Dehydrokarounidiol [ D - C - Friedo - Oleana - 5, 7, 9(11)-Triene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii Maxim. Chem Pharm Bull. 40(12), 3280-3283. DOI : 10.1248/cpb.40.3280   DOI
16 T. Akihisa, W. C. M. C. Kokke, T. Tamura & T. Nambara. (1992). 7-Oxodihydrokarounidiol [7-Oxo-Dc- Friedo-Olean8-Ene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii. Chem Pharm Bull. 40(5), 1199-1202. DOI : 10.1248/cpb.40.1199   DOI