• 제목/요약/키워드: anti-adipogenesis

검색결과 229건 처리시간 0.029초

Capsanthin Inhibits both Adipogenesis in 3T3-L1 Preadipocytes and Weight Gain in High-Fat Diet-Induced Obese Mice

  • Jo, Sung Jun;Kim, Jeung Won;Choi, Hye Ok;Kim, Jung Hwan;Kim, Hyung Joong;Woo, Sun Hee;Han, Byung Hoon
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.329-336
    • /
    • 2017
  • Adipogenesis in murine preadipocyte 3T3L-1 has been used as a model system to study anti-obese bioactive molecules. During adipogenesis in 3T3-L1 preadipocytes, we found that capsanthin inhibited adipogenesis ($IC_{50}$; $2.5{\mu}M$) and also showed lipolytic activity in differentiated adipocytes from the preadipocytes ($ED_{50}$; 872 nM). We identified that the pharmacological activity of capsanthin on adipogenesis in 3T3-L1 was mainly due to its adrenoceptor-${\beta}_2$-agonistic activity. In high-fat diet animal model study, capsanthin significantly enhanced spontaneous locomotive activities together with progressive weight-loss. The capsanthin-induced activation of kinetic behavior in mice was associated with the excessive production of ATP initiated by both the enhanced lipolytic activity together with accelerated oxidation of fatty acids due to the adrenoceptor ${\beta}_2$-agonistic activity of capsanthin. Capsanthin also dose-dependently increased adiponectin and p-AMPK activity in high fat diet animals, suggesting that capsanthin has both anti-obesity and insulin sensitizing activities.

Antioxidant and Anti-Obesity Effects of Juglans mandshurica in 3T3-L1 Cells and High-Fat Diet Obese Rats

  • Da-Hye Choi;Min Hong;Tae-Hyung, Kwon;Soo-Ung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.634-643
    • /
    • 2024
  • Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its antiobesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 ㎍/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.

Kahweol inhibits lipid accumulation and induces Glucose-uptake through activation of AMP-activated protein kinase (AMPK)

  • Baek, Jung-Hwan;Kim, Nam-Jun;Song, Jun-Kyu;Chun, Kyung-Hee
    • BMB Reports
    • /
    • 제50권11호
    • /
    • pp.566-571
    • /
    • 2017
  • Weight loss ${\geq}5$ percent is sufficient to significantly reduce health risks for obese people; therefore, development of novel weight loss compounds with reduced toxicity is urgently required. After screening of natural compounds with anti-adipogenesis properties in 3T3-L1 cells, we determined that kahweol, a coffee-specific diterpene, inhibited adipogenesis. Kahweol reduced lipid accumulation and expression levels of adipogenesis and lipid accumulation-related factors. Levels of phosphorylated AKT and phosphorylated JAK2, that induce lipid accumulation, decreased in kahweol-treated cells. Particularly, kahweol treatment significantly increased AMP-activated protein kinase (AMPK) activation. We revealed that depletion of AMPK alleviated reduction in lipid accumulation from kahweol treatment, suggesting that inhibition of lipid accumulation by kahweol is dependent on AMPK activation. We detected more rapid reduction in blood glucose levels in mice administrated kahweol than in control mice. We suggest that kahweol has anti-obesity effects and should be studied further for possible therapeutic applications.

Roots Extract of Adenophora triphylla var. japonica Inhibits Adipogenesis in 3T3-L1 Cells through the Downregulation of IRS1

  • Kim, Hae Lim;Lee, Hae Jin;Choi, Bong-Keun;Park, Sung-Bum;Woo, Sung Min;Lee, Dong-Ryung
    • 동의생리병리학회지
    • /
    • 제34권3호
    • /
    • pp.136-141
    • /
    • 2020
  • The purpose of this study was to investigate the action mechanism of the roots of Adenophora triphylla var. japonica extract (ATE) in 3T3-L1 adipocytes. Cell toxicity test by MTT assay and lipid accumulation was performed to evaluate the inhibitory effect on the differentiation of adipocyte from preadipocytes induced by MDI differentiation medium, while adipogenesis related proteins expression level were evaluated by western blotting. As a result, ATE inhibited MDI-induced adipocyte differentiation in 3T3-L1 cells dose-dependently without cytotoxicity. Our results showed that ATE inhibited the phosphorylation of IRS1, thereby decreasing the expression of PI3K110α and reducing the phosphorylation of AKT and mTOR, resulting in attenuated protein expression of C/EBPα, PPARγ, ap2 and FAS in 3T3-L1 cells. These results suggest anti-adipogenic functions for ATE, and identified IRS1 as a novel target for ATE in adipogenesis.

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.

3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석 (Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells)

  • 이해용;강련화;정상인;조수현;윤유식
    • 한국식품영양과학회지
    • /
    • 제39권1호
    • /
    • pp.54-63
    • /
    • 2010
  • Flavonoid 계열의 한 종류인 baicalin은 항염증, 항암, 항바이러스, 항세균 등의 효능을 가진다. 본 연구진은 선행연구를 통한 이전의 보고에서 baiclain이 adipogenesis pathway(지방세포 형성 경로)의 anti-adipogenic(지방세포 형성억제)과 pro-adipogenic(지방세포 형성 유도) factor들을 조절함으로써 비만 및 adipogenesis를 억제함을 밝혔다. 본 연구에서는, microarray 기술을 이용하여 3T3-L1 세포에서 baiclain이 유도하는 지방세포 형성 억제 효과에 대한 분자적 기작을 보다 상세하게 연구하고자 하였다. 지방세포의 분화 시간(0일, 2일, 4일 및 7일)과 분화 시 baicalin의 처리 유무에 따라 유전자 발현 양상을 분석하기 위해 해당 시료들을 microarray에 적용하였다. Microarray 결과로부터 2배이상의 변화가 있는 3972개의 유전자를 확보하였다. 그 유전자들의 발현 양상을 좀 더 자세히 살펴보기 위해 hierarchical clustering 분석을 진행하였고 그 결과로 20개의 cluster를 분류할 수 있었다. 그들 중 4개의 cluster는 분화의 전반적인 기간에서 baicalin의 첨가에 의해 뚜렷하게 상승(cluster 8과 cluster 10)하거나 반대로 뚜렷하게 감소(cluster 12와 cluster 14)하는 양상을 보였다. Cluster 8과 cluster 10에는 CHOP(CCAAT/enhancer-binding protein homologous protein), INSIG1(insulin induced gene 1), WISP2(WNT1 inducible signaling pathway protein 2), ADM(adrenomedullin), CCND2(cyclin D2), GRN(granulin) 및 TGFB3(transforming growth factor, beta 3)과 같은 세포 증식과 지방세포 형성 억제를 상승시키는 유전자들이 다수 포함되었다. 반대로 cluster 12와 cluster 14에는 세포 증식 억제, 세포 주기 억제 및 세포 성장 억제와 연관되거나 지방세포를 유도하는 유전자인 LTA(lympotoxin A), ACADSB(acyl-Coenzyme A dehydrogenase, short/branched chain), HMGCS2(3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2), IGFBP7(insulin-like growth factor binding protein 7), MERTK(c-merproto-oncogene tyrosine kinase), RASSF2(ras association(RalGDS/AF-6) domain family 2), RHOU(ras homolog gene family, member U) 및 SESN1(sestrin1) 등이 포함되었다. 결론적으로 baicalin은 세포 증식 및 지방세포 형성과 연관된 유전자들을 조절함으로써 지방세포의 분화를 억제하는 것으로 사료된다. 이러한 결과는 baicalin이 유도하는 지방세포 형성 억제 및 비만 억제 효과의 분자적 기작에 대한 중요한 정보를 제시한다.

죽엽황금복합추출물 BS21의 고지방식이 유도 비만 동물모델에서의 지방생성 및 고요산혈증 개선 효과 (BS21, a combination of Phyllostachys pubescens and Scutellaria baicalensis extracts, reduces adiposity and hyperuricemia in high-fat diet-induced obese mice)

  • 성윤영;이영실;김승형;김동선
    • 대한본초학회지
    • /
    • 제35권5호
    • /
    • pp.1-12
    • /
    • 2020
  • Objectives : Phyllostachys pubescens and Scutellaria baicalensis are considered to be effective in promoting blood circulation in traditional medicine. In this study, we examined whether a mixture of P. pubescens leaves and S. baicalensis root (BS21) had any anti-obesity, anti-hyperlipidemia, or anti-hyperuricemia effects and the possible mechanisms of action. Methods : We examined the effects of BS21 in high-fat diet (HFD)-induced obese mice. Mice were fed HFD with BS21 (75, 150, or 300 mg/kg) or Garcinia cambogia extracts (245 mg/kg) as a positive control for 8 weeks. At the end of 8 weeks, body weight, liver and adipose weight, adipocyte size, plasma lipid profiles, adipokine and uric acid levels, and adipose tissue expression levels in obesity and uric acid production-related genes were examined. Results : BS21 decreased body weight gain, white adipose tissue, liver weight, adipocyte size, and liver triglyceride accumulation. It also reduced levels of plasma glucose, triglycerides, non-esterified fatty acids, total cholesterol, low-density lipoprotein cholesterol, alanine transaminase, leptin, and uric acid. In contrast, BS21 increased adiponectin levels. Furthermore, BS21 decreased the expression levels of adipogenesis-related genes, such as peroxisome proliferator-activated receptor γ, sterol regulatory element binding protein-1c, and fatty acid synthase, as well as xanthine oxidoreductase, which is involved in uric acid production. Conclusions : These results suggest that BS21 may exert anti-obesity, anti-hyperlipidemia, and anti-hyperuricemia effects in HFD-induced obese mice by regulating the expression of xanthine oxidoreductase and adipogenesis-related genes.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권3호
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

생약복합물에 의한 지방세포형성 조절자의 유전자 발현 연구 (A Study on the Gene Expression of Adipogenic Regulators by an Herbal Composition)

  • 이해용;강련화;배성민;채수안;이정주;오동진;박석원;조수현;심예지;윤유식
    • 생명과학회지
    • /
    • 제20권5호
    • /
    • pp.729-735
    • /
    • 2010
  • 본 연구의 목적은 생약복합제제인 SH21B의 adipogenesis 억제 효능에 대한 상세한 분자적 메커니즘을 3T3-L1 지방세포를 이용하여 밝히는 데 있다. 실험에 사용된 SH21B는 7가지 생약성 천연물질인, 황금, 행인, 마황, 석창포, 포황, 원지 및 하엽으로 이루어졌다. 최근, 본 연구진에 의해 3T3-L1을 이용한 in vitro 연구와 마우스를 이용한 in vivo 연구에서 SH21B의 adipogenesis 억제효능이 밝혀진 바 있다. 본 연구에서는 3T3-L1 지방세포가 분화될 때 작용하는 다양한 지방세포형성 조절자들의 유전자 발현이 SH21B에 의해 어떻게 변하는지 살펴보고자 하였다. 실시간중합효소반응(real time PCR) 기술을 이용하여 SH21B를 처리한 지방세포와 그렇지 않은 지방세포를 비교한 결과, 최종마커인 ADIPOQ와 SLC2A4의 유전자 발현이 SH21B에 의해 급격하게 감소함을 알 수 있었다. 최종마커의 발현을 유도하는 핵심전사인자인 $PPAR{\gamma}$와 C/$EBP{\alpha}$의 유전자 발현 역시 SH21B의 처리 시 유의하게 억제되었다. 좀 더 상세한 분자적 메커니즘을 규명하기 위해, 핵심전사인자의 상위에 위치한 다양한 조절자들의 유전자 발현을 분석하였다. 그 결과, 여러 지방세포형성 유도조절자 중, Krox20과 KLF15의 유전자 발현이 SH21B 처리에 의해 유의하게 감소된 반면, C/$EBP{\beta}$와 KLF5의 유전자 발현은 SH21B 처리에 영향을 받지 않았다. 그리고 지방세포형성 억제조절자인 KLF2와 CHOP의 유전자 발현은 SH21B 처리에 의해 유의하게 증가되었다. 이러한 결과들은 SH21B의 지방세포형성 억제효능이 지방세포의 분화에 작용하는 다양한 상위조절자 중 지방세포형성 유도조절자인 Krox20과 KLF15 그리고 지방세포형성 억제조절자인 KLF2와 CHOP 등의 유전자 발현이 변화되면서 일어나는 복합적인 반응의 결과임을 제시한다.