• Title/Summary/Keyword: antenna gain

Search Result 1,490, Processing Time 0.028 seconds

A Study on the Performance of Energy-efficient System with Go-back-N ARQ Protocol in Wireless Home Network Environment (무선 홈 네트워크 환경에서 Go-back-N ARQ 프로토콜을 적용한 에너지 효율적인 시스템의 성능에 대한 연구)

  • Roh, Jae-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In traditional wireless communication systems the main power consumption is due to the actual transmissions power. Therefore, energy-constrained wireless networks have gained considerable research attention in recent years. Multiple-input-multiple-output (MIMO) structure, or multiple antenna communication is one of the techniques that has gain considerable importance in wireless systems and networks. In this paper, BER and throughput performance of MISO system with Go-back-N ARQ(Automatic Repeat Request) technique in wireless networks are analyzed and the energy consumption of MISO-based wireless networks is compared with conventional SISO-based wireless networks. Obtained results show the applicability of MISO system with Go-back-N ARQ technique in wireless networks with smart system design.

  • PDF

Development of LNA module for Ka-band Communication Satellite Payload (Ka 대역 통신위성중계기용 저잡음증폭기 모듈 개발)

  • Chang Donig-Pil;Jung Jin-Cheol;Yom In-Bok;Park Jong-Heung;Oh Seung-Hyeup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.189-192
    • /
    • 2004
  • A LNA module, integrated microwave assemblies (IMAs) were developed for use in Ka-band Satellite Communication Satellite Payload that operates in the frequency range of 29,6 ${\~}$ 30.0GHz. The module will be placed directly behind their respective antenna feed horns to minimize the required waveguide and system noise figure impact. Two MMIC LNA Chips were used in the module design. The measured result shows that the module has 32dB gain and 2.4dB NF performance. The module size is 51m ${\times}$ 36m ${\times}$ 22 and the mass is 92g. The Noise Figure performance is the best result of currently available modules for satellite payload operating in the same frequency range. The module will be assembled using space-qualified process and tested for space qualification.

  • PDF

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Full-Duplex Communication in Cooperative Cognitive Radio Network (협력 인지 통신망에서의 전 이중 통신)

  • Park, Sangwoo;Song, Iickho;Lee, Seungwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1374-1379
    • /
    • 2016
  • In almost all schemes of cooperative cognitive radio networks (CCRN), the users transmit and receive signals in half-duplex mode. In this paper, a design of CCRN adopting the full-duplex (FD) technique is addressed. In order to enable FD communication among users in the CCRN, simultaneous transmitting and receiving antennas are employed for the secondary users. Preliminary results from analysis and numerical evaluation indicate that the proposed FD multiple-input-multiple-output CCRN framework can provide a performance gain over the conventional CCRN frameworks.

Performance analysis of MIMO-OFDM systems with adaptive beamformer (다중 사용자 환경에서 적응 빔 형성기를 가진 MIMO-OFDM 시스템의 성능 분석)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.1-8
    • /
    • 2007
  • In this paper, the new beamforming is proposed for an orthogonal frequency division multiplexing(OFDM) system with multi-input multi-output(MIMO). Through the proposed Pre-FFT beamforming technique for MIMO-OFDM, the multibeams are formed toward each multi-transmitter antenna of the desired user. The proposed beamforming for MIMO-OFDM can reduce cochannel interference and get diversity gain in the multi-user environment. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by applying it to MIMO-OFDM system in the multi-user environment.

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

Design of UHF CMOS Front-ends for Near-field Communications

  • Hamedi-Hagh, Sotoudeh;Tabesh, Maryam;Oh, Soo-Seok;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper introduces an efficient voltage multiplier circuit for improved voltage gain and power efficiency of radio frequency identification (RFID) tags. The multiplier is fully integratable and takes advantage of both passive and active circuits to reduce the required input power while yielding the desired DC voltage. A six-stage voltage multiplier and an ultralow power voltage regulator are designed in a 0.13 ${\mu}m$ complementary metal-oxide semiconductor process for 2.45 GHz RFID applications. The minimum required input power for a 1.2 V supply voltage in the case of a 50 ${\Omega}$ antenna is -20.45 dBm. The efficiency is 15.95% for a 1 $M{\Omega}$ load. The regulator consumes 129 nW DC power and maintains the reference voltage in a 1.1% range with $V_{dd}$ varying from 0.8 to 2 V. The power supply noise rejection of the regulator is 42 dB near a 2.45 GHz frequency and performs better than -32 dB from 100 Hz to 10 GHz frequencies.

Design Criteria and Performance of Space-Frequency Bit-Interleaved Coded Modulations in Frequency-Selective Rayleigh Fading Channels

  • Park, Dae-Young;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.141-149
    • /
    • 2003
  • In this paper, we investigate design criteria and the performance of the space-frequency bit-interleaved coded modulation (SF-BICM) systems in frequency-selective Rayleigh fading channels. To determine the key parameters that affect the performance of SF-BICM, we derive the pairwise error probability (PEP) in terms of the determinant of the matrix corresponding to any two codewords. We prove that the bit-interleavers do the function of distributing the nonzero bits uniformly such that two or more nonzero bits are seldom distributed into the symbols that are transmitted in the same frequency bin. This implies that the bit-interleavers transform an SF-BICM system into an equivalent 1-antenna system. Based on this, we present design criteria of SFBICM systems that maximizes the diversity order and the coding gain. Then, we analyze the performance of SF-BICM for the case of 2-transmit antennas and 2-multipaths by deriving a frame error rate (FER) bound. The derived bound is accurate and requires only the distance spectrum of the constituent codes of SF-BICM. Numerical results reveal that the bound is tight enough to estimate the performance of SF-BICM very accurately.

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Fabrication of RFID Reader RF Transceiver for 900 MHz Bandwidth (900 MHz 대역 RFID 리더용 RF 트랜시버 설계 및 제작)

  • Kim Bo-Joon;Kim Chang-Woo;Kim Nam Yoon;Kim Young-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.58-64
    • /
    • 2006
  • A 900-MHz band transceiver has been developed for RFID reader applications. In the transmitter, a GaAs SPST switch is used for high speed switching and low power consumption. In the receiver, a double balanced mixer is used to compress even-harmonic products. The ASK demodulator which consists of an active filter and comparator is used to reject the unwanted in band interferers. The transceiver produces a maximum transmitting power of 30 dBm and exhibits an 5 m communication range with a 6-dBi gain antenna.