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Design Criteria and Performance of Space-Frequency
Bit-Interleaved Coded Modulations in Frequency-Selective
Rayleigh Fading Channels

Daeyoung Park and Byeong Gi Lee

Abstract: In this paper, we investigate design criteria and the per-
formance of the space-frequency bit-interleaved coded modu-
lation (SF-BICM) systems in frequency-selective Rayleigh fading
channels. To determine the key parameters that affect the per-
formance of SF-BICM, we derive the pairwise error probability
(PEP) in terms of the determinant of the matrix corresponding
to any two codewords. We prove that the bit-interleavers do the
function of distributing the nonzero bits uniformly such that two
or more nonzero bits are seldom distributed into the symbols that
are transmitted in the same frequency bin. This implies that the
bit-interleavers transform an SF-BICM system into an equivalent
1-antenna system. Based on this, we present design criteria of SF-
BICM systems that maximizes the diversity order and the coding
gain. Then, we analyze the performance of SF-BICM for the case
of 2-transmit antennas and 2-multipaths by deriving a frame er-
ror rate (FER) bound. The derived bound is accurate and requires
only the distance spectrum of the constituent codes of SF-BICM.
Numerical results reveal that the bound is tight enough to estimate
the performance of SF-BICM very accurately.

Index Terms: Space-time codes, bit-interleaved coded modulation,
orthogonal frequency division multiplexing, frequency-selective
fading, distance spectrum.

I. INTRODUCTION

Space-time codes have been introduced as an effective means
to increase wireless channel capacity by using multiple antennas
in frequency-flat fading channels [1]. Since the usual wireless
channel is frequency-selective, space-time codes are not appli-
cable directly to real channels. Orthogonal frequency division
multiplexing (OFDM) can render a good solution to this prob-
lem, as it transforms a frequency-selective channel into parallel
correlated frequency-flat channels. There have been reported a
large amount of works on the space-time coded OFDM [2]-[4].

Independently of this, Bit-interleaved coded modulation
(BICM) was introduced as a means of improving the perfor-
mance of coded modulation over fading channels [5]. It makes
the code diversity equal to the smallest number of distinct bits
(rather than channel symbols), and offers much better trade-
offs between code diversity and trellis complexity than trellis
coded modulation (TCM) does. The concept of BICM, when it
is applied to multiple transmit antenna environment, yields the
space-time bit-interleaved coded modulation (ST-BICM) [6]-
[11]. As BICM divides the code design process into encoder
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Fig. 1. The block diagram of SF-BICM: (a) Transmitter, (b) receiver.

selection and modulation scheme selection processes, the code
design with ST-BICM becomes simpler than that with the stan-
dard space-time code.

Biglieri et al. [6] analyzed the information theoretic limit of
ST-BICM, and showed that ST-BICM achieves ergodic and out-
age capacities close to those of the general coded modulation.
Recently, Park et al. [7], [8] showed the desirable property of
ST-BICM that it is highly probable that there does not exist over-
lap of non-zero symbols among the transmitted antennas, which
implies that the signal transmitted in each antenna does not in-
terfere with each other. This property enables a simplified per-
formance analysis of ST-BICM systems.

In this paper, we integrate the three components -- space-time
codes, interleavers, and OFDM -- to build a new system called
space-frequency BICM (SF-BICM) and then analyze its perfor-
mance. To determine the key parameters that affect the perfor-
mance of SF-BICM, we first derive the pairwise error probabil-
ity (PEP) in terms of the determinant of the distance matrix cor-
responding to any two codewords. To investigate the effects of
the bit-interleavers on those parameters, we prove that they dis-
tribute the nonzero bits uniformly such that two or more nonzero
bits are seldom distributed into the symbols that are transmitted
in the same frequency bin. This enables us to determine the per-
formance of SF-BICM based on that of the equivalent 1-antenna
system. In addition, we present simple design criteria of SF-
BICM systems that can maximize the diversity order and the
coding gain of the system.

This paper is organized as follows: To begin with, we describe
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the system model in Section II. Then, we derive the PEP in terms
of the determinant of the matrix corresponding to any two code-
words and, based on this, we present design criteria of SF-BICM
systems in Section III. Finally, in Section IV, we derive a new
upper bound of the frame error probability and demonstrate by
simulations that the bound is tight enough to estimate the per-
formance of SF-BICM directly.

II. SYSTEM MODEL

We consider a baseband communication system with ng
transmit antennas and ng receive antennas. Fig. 1 (a) shows
the block diagram of the transmitter of SF-BICM for the case of
nyp = 2. The transmitted data are encoded by a rate-1/ny bi-
nary linear channel code, such as a convolutional code or a turbo
code. We regard the rate-1/np code as ny rate-1 component
codes whose outputs are transmitted over single transmit an-
tenna to avoid the event that all the outputs of the component en-
coders experience the same fading [12]. ny independent inter-
leavers bit-interleave n encoded sequences separately, and the
interleaved sequences are applied to a serial-to-parallel (S/P)
converter that produces two parallel data sequences. The data
sequences are then mapped into QPSK symbols based on the
Gray mapping rule. The elements of the signal constellation are
contracted such that the average energy of the constellation be-
comes 1. We define a space-frequency codeword matrix of size
np X L, obtained by arranging the transmitted sequence in an
array, as

o e
c? c% cee CZL
c= ; ey
nT T nrt
cl 02 PR CL

for which the ith row ¢! = [¢! ¢} --- ¢%] is the data sequence
transmitted from the th transmit antenna, and the kth column
cr = [c} 2 -+ cf7]" is the space-frequency symbol at the kth
subcarrier. In the equation, L denotes the number of subcarri-
ers in one OFDM frame. The inverse discrete Fourier transform
(IDFT) is applied to the symbols before transmission at each
antenna. We assume that by using a cyclic prefix (CP), the or-
thogonality of subcarriers is preserved and the intersymbol inter-
ference (ISI) between consecutive OFDM symbols is eliminated
[13] at the same time.

In this paper, we assume that the channel is modeled as quasi-
static and the impulse response from transmit antenna ¢ to re-
ceive antenna [ is

(2)

nrn

Z RLLS (T

where M denotes the number of multipaths and h%!’s are the
independent complex Gaussian random variables corresponding
to the integer delays n,,,’s, normalized such that

2]217

where E[-] denotes the expectation operation.

M

Z E “h:nl

m=1

for all 4,1, 3)
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At the receiver, the discrete Fourier transform (DFT) is ap-
plied to the received signals to obtain the following output for
the kth subcarrier and the [th receive antenna

ny
o= \/ESZa;clcﬁc—knk, )
=1

where E, denotes the energy per symbol and 77}C the noise com-
ponent of the receive antenna [ at subcarrier &, which is an in-
dependent sample of the zero-mean complex Gaussian random
variable with variance % per dimension. The coefficient a};l is
the fading attenuation for the kth subcarrier from transmit an-
tenna i to receive antenna [/, having the expression

ot = hthwy, (5)
for !
pid = [pitpit o pid ’ (6a)
1 f M
j2rnyk j2mmn j2nnprk T
w, = [e’iL—lk e‘ﬂTﬁ ~e_iTMi} (6b)

For decoding, we adopt the iterative demodulation-decoding
method in [14] (see Fig. 1 (b)). The a posteriori probability
(APP) demodulator generates the log likelihood ratio (LLR) of
channel-encoded bits using noise statistics. The LLR’s are dein-
terleaved and transferred to the channel decoder, such as BCIR
decoder [15] or SOVA decoder [16]. The decoder outputs are
then re-interleaved and fed back to the APP demodulator. LLR’s
are iteratively interchanged between the demodulator and the
decoder to successively improve the error performance.

II1. DESIGN CRITERIA FOR SF-BICM SYSTEMS

SF-BICM systems are composed of a serial concatenation of
a linear channel coder, bit-interleavers, modulators, and OFDM
as indicated in Fig. 1. Since we employ uniform bit-interleavers,
QPSK modulators, and conventional OFDM, the remaining de-
sign task s the choice of channel codes. For a design guide-
line and performance analysis of SF-BICM, we need to analyze
the effects of codewords of channel codes on the system perfor-
mance. So, we first derive an upper bound of the PEP for two
given codewords. Then we investigate the property of the dis-
tance matrix that is related to the PEP bound, and, based on this,
we establish design criteria for SF-BICM systems.

A. Pairwise Error Probability

PEP is the probability that the decoder selects a sequence &
as an estimate of the transmitted sequence c. If an ideal channel
state information (CSI) is available at the receiver, the PEP takes
the expression [13]

P.c,&) = E {Q ( %dQ(c, c)ﬂ :

for the tail probability of the Gaussian probability density func—
tion Q(y) = \/E f 3% dz, the SNR per symbol v, = No

INote that j in (6b) denotes v/—1.

)
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and the squared modified Euclidean distance

nr L ny ng L
d*(e,e) =3 > ) ai(e - @ => > leber]", ®
=1 k=1 |i=1 =1 k=1
for
of = |at'al’ i, )
e = [hel )", o)
where e}, = ¢} — ¢.. From (5), we obtain [4]
ak - h'l ( nr & 'LUk) 3 (10)

where h; = [hl’l h*t .

matrix, and ® denotes the Kronecker product [17]. If we insert
(10) to (8), we get

- R l], ne 18 the np x np identity

an

ng

~ ~H

=Y hQh;,
=1

for 2

Q= I“EIhwmwnwku 2w By, (122)
k=1

Ry = E[h{h), (12b)

i‘_” = hZR;1/2‘ (12¢)

The matrix Q) plays the same role of the codeword distance ma-
trix in {7], (18], so it can be called the generalized codeword
distance matrix.

Let 0y denote the symbol-wise Hamming distance, i.e., the
number of subcarriers k = 1,2, - - - , L, such that e, # 0. Then,
the rank of @, or Ay, is bounded above by min{éy,nrM},
since the rank of ekef in (12a) is O or 1. Let A, ¢ =
1,2,---,Apg, be the positive eigenvalues of Q. Then d>(c, &)
can be rewritten as

Ag ng

= ZZ )‘i|)8i71'27

i=1 =1

(13)

where 3%!’s are independent complex Gaussian random vari-
ables with a zero mean and the variance of 1/2 per dimen-
sion. If we insert (13) to (7) and apply the alternative form of
Qly) = 1/x f’r/z ~v*/2sin* 049 we can calculate the PEP in
the form [18]-[20]

1 /2 Ay
Pe(c,é):;/ H<1+
0

i=1

/\i’Ys e
— da, 14
4sin? 9) 14
which implies that the diversity order is Ayng [18]. Since it
is not an easy task to find the eigenvalues of @ corresponding
to a pairwise error event for a given channel code, we, instead,
use a PEP upper bound that depends only on the product of the

2Note that R), is invertible as we assume h};f 's are independent random vari-
ables.
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eigenvalues, not on the individual eigenvalues. Let A, be the
product of all the eigenvalues, i.e.,

Ay
A =T
i=1

If we replace each \; with the geometrical mean A;)/ AH wecan
obtain a tight upper bound to the PEP as follows: [18], [19]

(15)

1 [ AI/AH “aima
Pe(Ag,A,) = ;/0 <1+m) do
= Japng) (%) , (16)
where
Jnle) = [P “i( o u-rer an

k=0

for a positive integer m and P (z) = % (1 -~ /1—_%) , © = 0.
This corresponds to the PEP for the case when one transmit an-
tenna and A g n i receive antennas are used in the frequency-flat
channel and the squared Euclidean distance between two code-
words is A;,/ &M This interpretation gives an insight into the
effects of transmit diversity and receive diversity in frequency-
selective fading channels. The highest possible diversity order
is the product of the number of transmitter antennas, the number
of receiver antennas, and the number of multipaths.

If the channel is frequency-flat (i.e., M = 1), then w; = 1
and Ry, = 1,,,., so (12a) becomes

L
Q=) eref =(c—&(c-&", (18)
k=1

which is the case investigated in detail in [7].

B. Distance Matrix

As shown in Fig. 1 (a), the output sequence from each com-
ponent code of the channel code is bit-interleaved and apphed to
an S/P converter that produces two parallel bit sequences bk S

and b;CQ’s, i =1,2,---  np, where 7 indicates the ¢th compo-
nent code. So the S/P-converted bit sequences may be denoted
in matrix form by

B=[b by - b
for

b= 0 5y | e,
k:112?"' 5Ls

by | ez, (19)

(20)

where Zo denotes a binary group comprised of 0 and 1. The
modulator at the last stage maps by, into a space-frequency sym-
bol ¢;. based on the Gray mapping rule, i.e.,

1

A AR YRR
dh= {0 it 1)
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The distance matrix I, between two space-frequency sym-
bols is

Dy = erell = ding{lel %, [, e ), (22)
for
lei? = {‘1 )b”@b,i." \1 )b’Q@bLQ }
— 2y ([b;j b9, (B B;;Q]), 23)

where @ denotes the exclusive OR operation and d H(a:,y) the
Hamming distance between x and y. Note that e;e; T=D.)in
(12a) characterizes the eigenvalues of Q. The number of posi-
tive eigenvalues of € (i.e., the rank of Q) is less than or equal to
&1, the number of nonzero D’s. The distance matrix D}, does
not depend on the transmitted codewords but depends only on
the Hamming distance. So we can analyze the performance as-
suming that the space-frequency codeword matrix correspond-
ing to an all-zero codeword is transmitted, without loss of gen-
erality.

We assume that the Hamming distance of the output of the
ith component code of the channel code is d;, and define d =
[di dg -+ dn,] and sum(d) = >°I7 d;. By definition, 0
is equal to the number of nonzero Dy, ’s, that is, the number of
nonzero dH(bk,bk) s, because Tr(Dy,) = 2dy (by, bk) where

Tr(-) denotes the matrix trace operation. So, if we consider the
relation

L
> dp(bg, br) = sum(d), (24)
k=1

we find that the maximum number of the nonzero dy (b, Bk)’s
is sum(d). This maximum is obtained, or equivalently, § 5 takes
on the maximum value sum{d), if and only if there does not
exist any & that makes dy (bg, Bk) > 2.

The interleaver has a property which distributes the nonzero
bits uniformly such that two or more nonzero bits are seldom
distributed into the same column of 3 in (19). This property
makes the symbol-wise Hamming distance d maximized with
a high probability for a given Hamming distance. This is desir-
able because the diversity order of PEP is then maximized for a
given Hamming distance with a high probability. We can verify
this property with the aid of the following theorem.

Theorem 1: For a given d and a frame length 7, the proba-
bility that 67 does not take on sum(d) is O(L~!). Equivalently,
the probability that there exists a k such that dp (b, Bk) > 2is
o(L—".*4

Proof: If there exists a k such that dy (b, Ek) > 2, then
&y takes on a value less than sum(d) and vice versa. This im-
plies that the event § 5 #sum(d) is equivalent to the complemen-
tary event of dy (by, l;k) < 2 for all k. According to the deriva-
tion given in Appendix, the probability that d (by, by.) < 2 for

3Note that the left-hand side of the equation is the sum of the number of
nonzero bits in each column of 3 and the right-hand side is the sum of the
number of nonzero bits in each row of 3.

4We write f(z) = O(g(x)) if there exist positive constants M and xq such
that | f(x)| < Mg(x) forall x > zo.
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Fig. 2. Fading channels: (a) Transmit diversity channels, (b) equivalent
fading channels.

all kis
nr (L Zl 1d)2

,L}=]:[ @;) :

Pr{dy(bg,by) <2, k=1,2,---

(25)
so, the probability of the complementary event is
nr (L*Z;iﬁ dj)2di
Pr{éy # sum(d)}=1— H -%*
i=1 (d)
ny d;—1
: +1
=1-TITI ( ———Zﬂ — >.(26)
i=1 =0
If we apply the following inequality in [8] to (26)
N N
1= z<[0-2), 0sm<1, @D
i=1 i=1
we get
s il 22?_1 d; +1
<1 — . T4g=ty .
Pr{éy #sum(d)} <1 E (1 ; 5L 1 ) (28)

Applying (27) to (28) again and putting dp,,, = max;{d;}, we
get

np df—l Z 1 d + l
P <
r{dy # sum(d)} ;lzo 2L~l
n'_l‘(n'l' - 1)d$naz + anmaz(dmaw - 1)/2
< 29
- 2L —dmaz +1 » (29)
which is of order O(Z~!). This completes the proof. O

The probability that 6 does not take on sum(d) is inversely
proportional to the frame length L. Since sum(d) is the maxi-
mum value that & can take, Theorem 1 implies that the prob-
ability of the maximum symbol-wise Hamming distance ap-
proaches 1 as L becomes large.
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If dir (by, Bk) < 2 for all k, then the PEP would be the same
as the case when the signal transmitted in each antenna does
not interfere each other. So if the frame length is sufficiently
long, then dg (b, Bk) becomes less than 2 with a probability
close to 1. This implies that the bit-interleavers transform the
nr-antenna space-frequency code into an equivalent 1-antenna
system where ny IDFT-output sequences are transmitted seri-
ally (i.e., not simultaneously).

Fig. 2 depicts the transmit diversity channels in comparison
with the equivalent fading channels. In the case of the transmit
diversity channels, a superposition of nr transmitted signals is
received at each receive antenna. In contrast, in the case of the
equivalent fading channels, n sequentially transmitted signals
are received at each receive antenna and the throughput reduces
by the ratio 1/ny. Based on this transmit diversity channel-
to-equivalent fading channel transformation, we can predict the
performance of SF-BICM from that of the equivalent 1-antenna
system.

C. Design Criteria

Theorem 1 guarantees that dj; (bg, by) < 2 for all k with a
high probability. If dy(be,b) = 1, the distance matrix D,
in (22) becomes diag{0,---,0,2,0,--- ,0}, that is, only one
diagonal element takes on a nonzero value. Let K; denote the set
of instance k such that |e} |2 = 2. If we assume dj7 (b, by) < 2
for all k, then |K;| = d;, where |K;| denotes the number of
elements in set K.

If we rewrite (12a) in matrix form, we get

Q o0 .. 0
Q, - 0
Q=nR) 2 |RY: Gow
0 o Q.,
for
Q=2 wuwy. (30b)
keK;

The diversity order is determined by Ay, or the rank of @, and
Ajr can be determined by evaluating the rank of Q, as follows:

Theorem 2: For a given number of multipaths M, and the
number of elements in set K, the generalized codeword dis-
tance matrix ) has the rank

Ay = min(|K;|, M). (31)

i=1

Proof:  Since Rj in (30a) is invertible, the rank of Q
is the same as that of R,;l/ QQR;U ’. Since the eigenvalues
of R;l/ 2QR;]/ ? are the roots of the characteristic equation
det(Mnpar — Ry, PQR, M)=[T07, det(My — Q,) = 0, the
set of the eigenvalues of R;l/ QQR;U % is the union of the
sets of the eigenvalues of Q,, i = 1,2,--- ,ny. Therefore,

the number of positive eigenvalues of R;l/ QQR;V %is equal
to the sum of the number of positive eigenvalues in each Q,,
¢t =1,2,--- ,ny. Therefore, to prove the theorem, it suffices to
prove that rank Q; = min(|K;|, M).
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We rewrite @, in (30b) as

Q, =2W,wH, (32)

where W, = |wy, wy, S W J] for the elements k1, ko, - -,
k k.| of set K;. If we carry out row and column permutation on
the L x L DFT matrix F, we can get the permuted matrix F

[ ]

T U
where S, T' and U consist of the remaining elements of the
DFT matrix F'. Since F has full rank, the permuted version
F also has full rank. W, is a submatrix of a leading principal
submatrix of F. A matrix has full rank if and only if all the
leading principle submatrices have full rank [23]. Therefore,
W, has full rank, min(|K;|, M). Since W, has full rank, Q;
has the rank min(|K;|, M). ]

Since @ is an ny M x npM matrix, the maximum possi-
ble number of positive eigenvalues is ny M. If |K;| > M,
i = 1,2,-- ,ny, then Ay becomes nrM by Theorem 2.
But |Kj| is equal to d; if dH(bk,Bk) < 2 for all k, which is
highly probable according to Theorem 1. Therefore, if d; > M,
i=12,--- ,nr, then Ay becomes nrM with a high proba-
bility, that is, the diversity order becomes the maximum value
nypnpM with a high probability. When such maximum diver-
sity order is achieved, @ has full rank and A, is equal to the
determinant of Q. As a larger A, yields a lower PEP in (16),
it is desirable to arrange the system parameters to make det(Q)
large. This observation leads us to the following design criteria
for SF-BICM systems .

Design Criteria for SF-BICM Systems:

(1) In order to achieve the maximum diversity order nrnp M,
the minimum Hamming weight d; of each component code
should be greater than or equal to the number of the mul-
tipaths M. If there are some minimum Hamming weights
d;’s less than M, the achievable diversity order drops to
nRr Y.t min(d;, M).

(2) Once the maximum diversity order nng M is achieved,
the minimum determinant of Q, or []"7, det(Q;), should be
maximized over all pairs of distinct codewords.

(33)

IV. FER PERFORMANCE OF SF-BICM SYSTEMS

We consider the SF-BICM system with two transmit antennas
and two multipaths (i.e., np = 2 and M = 2). Based on Theo-
rem 1, we assume that L is sufficiently large and dg; (by,, by) < 2
for all k and |K;| = d;, i = 1,2. We also assume that each
minimum Hamming weight of the component codes is greater
than or equal to M. We derive the performance bound based on
these assumptions first and then examine some numerical results
of the SF-BICM system.

A. Approximate Performance Bound

To evaluate the performance of the 2-transmit antenna, 2-
multipath SF-BICM system, we need to compute the determi-
nant of @ in (12a) for ny = 2 and M = 2 for a given in-
terleaver, then determine the upper bound of the PEP in (16),
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and finally take the average of the PEP over all possible inter-
leavers. However, this process requires a large amount of com-
putation and memory. So, we switch the order of the operations
in such a way that we compute the average of the determinant
of @ over all possible interleavers first and then substitute it for
Ay in (16). Since the PEP upper bound in (16) is a convex func-
tion of A, this switched operation yields a value lower than the
upper bound by Jensen'’s inequality [21], i.e.,

E[Pg(Au,Ap)] = Pe(An, E[A)]). (34)
As the resulting PEP bound may be less than the true value in
extreme cases, it is rather an approximate bound than an upper
bound.
We first consider the term @, in (30b). By applying (6b), we
get :

di Z e_j2ﬂ'("L1L—"2)’c

keK;

Qi =2 Z eJ'?"("lL—nQ)k di (353)
keK;
whose determinant is
_ 2
det(Q,) = 4d? —4| Y e T (35b)
keK;

Letk;, i =1,2,--- ,d; (withky < ko < --- < k) be the ele-
ments of K; and denote 0, = 2—”(@%% forp=1,2,---,d;.
If we assume L >> d;, then 6,’s can be regarded as indepen-
dent uniformly distributed random variables, ranging from 0 to
27. Then E [e=3%=%)] = 0 for p # g, and applying this to
(35b), we obtain

d;

g e =78

p=1

E [det(Q,)] = 4d? — AE = 4d? — 4d;. (36)

Returning this to (30a), we get
2
E[A,] = E[det(Q)] = det(Ry) [ [ [4di(d: —~ 1)]. 37
=1

If we substitute £ [A,] for A, in (16), we can obtain an approx-
imate PEP bound. The above equation means that as the product
of the Hamming weights of the component codes becomes large,
the average of det(Q) increases, thereby yielding better perfor-
mances. Therefore, for the case of npr = 2 and M = 2, the
second design criterion in the previous section may be rewrit-
ten as follows: Once the maximum diversity order is achieved,
[T:2, di(d; — 1) should be maximized.

We apply the union bounding technigue to obtain an upper
bound of FER for a maximum likelihood (ML) decoding of SF-
BICM. ® Then, the FER of SF-BICM with QPSK signaling can

SIt is not tractable to obtain the performance bound of the communication sys-
lems employing iterative decoding, so we derive the bound of SF-BICM based
on ML decoding. Though the performance of iterative decoding is not guar-
anteed to converge to the ML performance, it has been empirically known to
approach closely [22].
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Table 1. Distance spectrum of the convolutional code with generators
(7,5) in octal.
(A2 Jaa][d [ 2] aa]
2 3 1 4 5 10
2 4 1 4 6 15
2 5 1 4 7 21
2 6 1 6 2 1
2 7 1 6 3 5
2 8 1 6 4 15
2 9 1 [ 5 35
2 10 1 8 2 1
4 2 1 8 3 7
4 3 3 10 2 1
4 4 6 10 3 9
be expressed by [13]

P(e) < 2nyrL Y agPp (nrnpM, det(Ry)det(Q)), (38)
d

where r denotes the code rate of the binary channel code, ag
the number of codewords whose Hamming weight from the ith
component code is d;, i = 1,2,--- ,nr, and Pg(An,A,) the
PEP upper bound in (16). ® When ny = 2 and M = 2, we
obtain an approximate FER performance bound based on the
approximate PEP bound incorporating (37), i.e.,

2
P(e) ~ 4rLZadPB <4nR,det(Rh H i(d; — 1) )
d i=1
(39)

B. Numerical Results

We now examine some numerical FER performances of the
2-transmit antenna, 2-multipath SF-BICM system through sim-
ulations. We use the newly derived bound in (39) to evaluate the
FER bounds and compare them with the simulation results. As
we need only the distance spectrum of the binary channel codes
to calculate the above FER bounds, the FER bounds are appli-
cable to any binary linear codes, such as convolutional codes,
turbo codes, and others. In evaluating the FER bound, we use
the truncated distance spectrum, as the FER upper bounds may
be satisfactorily approximated by taking into account the code-
words for which the product of Hamming distances is less than
or equal to a predetermined value. We take 30 as this predeter-
mined value. By modifying the algorithm in {24], we can obtain
the resulting number of simple error events of the convolutional
code with the generators (7,5) in octal expression as listed in
Table 1.

In the simulations, we take the available bandwidth of 1 MHz
and use 256 carrier tones (i.e., L=256) for OFDM modulation.
This corresponds to a subchannel sparation of 3.9 kHz and the
OFDM frame duration of 256 us. To each frame, we add a cyclic

S8For the case of time-invariant codes (e.g., convolutional codes), the sets of the
simple error events that start at different times are identical if the edge effect is
ignored. Since the number of input bits to the code is 2n L, there are 2nrL
error events for a simple error event pattern. So, the FER bound based on the
union bound is 2nyr L times the first error probability. In contrast, for the case
of turbo codes, the sets of the simple error events that start at different times are
not identical and the effect of 2 L is incorporated in the parameter a4.
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Frame Error Probability

A—— A SF-BICM (1 iter)
G———< SF-BICM {2 iter)
v———— SF-BICM (3iter)
#—————* SF-BICM (5 iter)
G—————© SF-BICM (10 iter)
107 1 L 1 L - L L L L
10 11 12 13 14 15 16 17 18 19 20
Symbol SNR per receive antenna (dB)

Fig. 3. Frame error probability versus the number of iterations for SF-
BICM whose channel code is a 4-state convolutional code (nr = 2,
M =2).

prefix of 40 us duration to combat the effects of intersymbol
interference. Therefore, the information rate is 2 x 256/296 =
1.73 bits/sec/Hz.

We use random interleavers as the bit interleavers and employ
iterative demodulation-decoding method with perfect channel
state information (CSI) at the receiver [14]. We plot the result-
ing FER performance curves with respect to the symbol SNR
per receive antenna, ny E,; /N,. We also evaluate through simu-
lations the FER performance of the equivalent 1-antenna system
with the same generators. For this, we employ Viterbi decoding
to obtain ML performances.

Fig. 3 plots the FER performance for different numbers of
iterations of SF-BICM. From the figure, we observe that there
is a large improvement in FER between the first iteration and
the second. The FER improvement from the second to the third
iteration is still considerable, but not as dramatic as the first im-
provement. Performance improves with increasing iterations but
the amount of the improvement diminishes and nearly no im-
provement is observed beyond the fifth iteration. So we may
regard the performance after the fifth iteration as the final.

Fig. 4 plots the resulting performance of SF-BICM whose
channel code is the 1/2-rate convolutional code with the gen-
erators (7,5) in octal expression. The channel of Fig. 4 (a)—(c) is
a 2-ray equal-power delay profile and that of Fig. 4 (d) is a 2-ray
delay profile with the power ratio of 3:1. The delay spread of
channel is 10 us for Fig. 4 (a), (b), and (d) but 40 us for Fig. 4
(c). The number of receive antennas is one for Fig. 4 (a), (¢), and
(d) but two for Fig. 4 (b). Overlaid in each graph is the perfor-
mance of the equivalent 1-antenna system (np = 2, M = 2).
We observe from the four figures that the performance of SF-
BICM closely approaches that of the equivalent 1-antenna sys-
tem after five iterations. We also observe that the FER bounds
are tight enough to estimate the performance of SF-BICM with
sufficient accuracy for the FER range between 10~* and 1073,

In case no interleaver is employed, the delay spread is sup-
posed to affect the performance significantly [2]. However, we
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observe, in Fig. 4 (a) and (c), that the delay spread does not
affect the performance if interleavers are included. It is not a
surprising result because the FER bounds in (39) is independent
of the delay spread. This is because the random interleavers
spread non-zero bits uniformly, causing an averaging effect on
the performance and, consequently, nullifying the delay spread-
ing effect.

The determinant of @ in (37) is proportional to the determi-
nant of the channel gain autocorrelation matrix Rj,. For a given
fixed trace of Ry, det(Rp) becomes maximum when the diag-
onal elements are all equal, that is, the channel has an equal-
power delay profile. Comparing Fig. 4 (a) and (d), we can con-
firm that the SF-BICM in an equal-power delay profile outper-
forms that in an unequal-power delay profile with the power ra-
tio of 3:1.

V. CONCLUDING REMARKS

So far, we have explored SF-BICM systems in frequency-
selective fading channels. We have established SF-BICM by
combining bit-interleavers and OFDM and examined its design
criteria that maximize the diversity order and coding gain. We
have unveiled the effects of bit-interleavers by showing that it
transforms an np-antenna SF-BICM system into an equivalent
1-antenna system. By exploiting this property, we were able to
analyze the performance of SF-BICM very easily.

We have derived the PEP in terms of the determinant of the
matrix @ and have proved that the allocated bits in each an-
tenna seldom coincide. So, the PEP would be the same as the
case when the signal transmitted in each antenna does not in-
terfere each other. This property implies that the bit-interleavers
transform an ny-antenna SF-BICM into an equivalent 1-antenna
system where each IDFT output sequence is transmitted seri-
ally. Based on the PEP, we have determined design criteria for
SF-BICM.

We have analyzed the performance of SF-BICM using the
fact that the performance of SF-BICM is equivalent to that of
the equivalent 1-antenna coded system. We have derived a sim-
ple FER bound that is accurate and requires only the distance
spectrum of the constituent codes of SF-BICM systems.

If we summarize the findings out of the analyses and numer-
ical results, we get the following: First, the bit-interleavers uni-
formly spread the nonzero bits from the channel code, so that
the allocated bits in each antenna seldom coincide. Second, §y
takes on sum(d) with a high probability, which approaches 1
for a large L. Third, we can obtain the performance bound by
substituting n; M for Ay and det(R),)det(Q) for A, respec-
tively, and this bound is tight enough to use in predicting the
performance of SF-BICM directly. Fourth, SF-BICM systems
reduce to the equivalent 1-antenna system for a large value L.
Fifth, the performance of SF-BICM is irrelevant of the delay
spread.

APPENDIX

Derivation of Equation (25)
For dy (b, bi) < 2, the number of possible locations of
nonzero d; bits in 3 is ( dLl ) and the number of different ordering
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Fig. 4. Frame error probability of SF-BICM whose channe! code is a 4-state convoiutional code (np = 2, M = 2): (a) One receive antenna and two
equal-power taps with the delay spread 10 us, (b) two receive antennas and two equal-power taps with the delay spread 10 ps, (C) one receive
antenna and two equal-power taps with the delay spread 40 us, (d) one receive antenna and two taps with the delay spread 10 us and the power

ratio of 3:1.

of a nonzero bit in selected locations is 291, since we assume a
QPSK modulation. Likewise, the number of possible locations
of ds columns in the submatrix of 3 that exclude d; columns is
(* d_jl) and the number of different ordering of a nonzero bit in
selected locations is 2¢2. Repeating this procedure, we find that
the number of all possible 3’s is [[%, (L7Z jv:i Yot As we
assume uniform interleaving, the number of ;;ossible permuta-
tion becomes [, (ZL ). Therefore, we obtain equation (25).
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