• Title/Summary/Keyword: antenna array

Search Result 1,257, Processing Time 0.029 seconds

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

K-Band Array Patch Antenna Having Unequal Input Impedance (비균일 입력 임피던스를 갖는 K 밴드 패치 어레이 안테나)

  • Kim, In-Ho;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1050-1055
    • /
    • 2010
  • In this paper, the K band $3{\times}6$ array antenna having unequal input is presented. To control the input impedance of the patch antenna, the length of inset feed is adjusted. Also, the same current in each element is excited by Kirchhoff's law. The proposed unequal impedance array antenna is a nonuniform amplitude array. The bandwidth of the proposed unequal impedance array antenna is wider by 1.5 times than that of the equal array antenna. This broad bandwidth is thought to be due to multiple resonances of patches. The unequal impedance array antennas have fractional bandwidths of 5.07 % and gains of 18.32 dBi.

A Study On The Microstrip Slot Array Antenna Design (마이크로스트립 슬롯 배열 안테나 설계에 관한 연구)

  • 한석진;박익모;신철재
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.147-150
    • /
    • 1999
  • A T-shaped microstripline-fed printed slot array antenna having wide bandwidth, high gain, and narrow bandwidth is presented in this paper. The proposed antenna is analyzed by using the transmission line model method. We fabricated 4$\times$1 microstrip slot array antenna and measured its return loss and radiation pattern. The maximum bandwidth of this array antenna is from 1.43 ㎓ to 2.60 ㎓, which is 58.1% for the VSWR $\leq$ 2.

  • PDF

High Efficiency Slot Array Based on a Single Waveguide-Fed Cavity Backed Sub-Array (단일 도파관 급전된 캐비티 장착 서브어레이를 이용한 고효율 슬롯 배열 안테나)

  • Jung Kangjae;Lee Hak-Yong;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1141-1146
    • /
    • 2004
  • The antenna array for receiving satellite broadcasting of Koreasat III is proposed. A cavity-backed slot antenna array is proposed to reduce feed line loss, increase the radiation efficiency, and make the feed network simple. A sub-array consists of $2{\times}4$ slot elements backed by a single cavity. By proper choice of dimensions it is shown that the proposed antenna has characteristics of the high radiation efficiency and the broad frequency bandwidth. Antenna characteristics for the array antenna with 256 elements are measured in Ku-band. A single cavity backed-sub-array has the gain of 18 dEi. The gam of the total antenna array(256 elements) is Over 33 dEi.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Design of the Circular Microstrip Array Antenna using the Resonater Conception (공진기 이론에 의한 원형 마이크로스트립 배열의 안테나의 설계)

  • 박두석;홍의석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.684-689
    • /
    • 1990
  • We design a circular microstrip array antenna using the admittance of circular resonator. We can design the array antenna, considering equivalent radius of circular microstdrip consistant with conductances which are obtained from excitation coefficeients of the array elements. The antenna with 10 array elements are made on teflon substrate from Tshebyscheff method. It's perfermence are the gain 8.9dB, half power beam width 11.3dge, max, side lobe level -19dB, and they are almost in agreement with the theoretical results.

  • PDF

New Elements Concentrated Planar Fractal Antenna Arrays for Celestial Surveillance and Wireless Communications

  • Jabbar, Ahmed Najah
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.849-856
    • /
    • 2011
  • This research introduces three new fractal array configurations that have superior performance over the well-known Sierpinski fractal array. These arrays are based on the fractal shapes Dragon, Twig, and a new shape which will be called Flap fractal. Their superiority comes from the low side lobe level and/or the wide angle between the main lobe and the side lobes, which improves the signal-to-intersymbol interference and signal-to-noise ratio. Their performance is compared to the known array configurations: uniform, random, and Sierpinski fractal arrays.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • Choi, Hee-Young;Park, Hyung-Geun;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.501-505
    • /
    • 2003
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

  • PDF

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module

  • Kim, Sangkil;Rida, Amin;Lakafosis, Vasileios;Nikolaou, Symeon;Tentzeris, Manos M.
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.262-269
    • /
    • 2019
  • This paper introduces a low-cost, high-performance mmWave antenna array module at 77 GHz. Conventional waveguide transitions have been replaced by 3D CPW-microstrip transitions which are much simpler to realize. They are compatible with low-cost substrate fabrication processes, allowing easy integration of ICs in 3D multi-chip modules. An antenna array is designed and implemented using multilayer coupled-fed patch antenna technology. The proposed $16{\times}16$ array antenna has a fractional bandwidth of 8.4% (6.5 GHz) and a 23.6-dBi realized gain at 77 GHz.