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This research introduces three new fractal array 
configurations that have superior performance over the 
well-known Sierpinski fractal array. These arrays are 
based on the fractal shapes Dragon, Twig, and a new 
shape which will be called Flap fractal. Their superiority 
comes from the low side lobe level and/or the wide angle 
between the main lobe and the side lobes, which improves 
the signal-to-intersymbol interference and signal-to-noise 
ratio. Their performance is compared to the known array 
configurations: uniform, random, and Sierpinski fractal 
arrays. 
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I. Introduction 

The performance of any wireless system depends heavily on 
the antenna section. The antenna is responsible for collecting 
the transmitted information and directs it to the next stage. 
Hence, careful design of the antenna ensures stable and reliable 
RF signal flow.  

Antenna arrays are widely used in modern communication 
systems to enhance the directivity, electronic scanning, and 
steering the main beam to track a source [1], [2]. The easiest 
way to arrange antennas within an array is to use the uniform 
antenna array (UAA). In UAA, the antennas are spaced by a 
fixed distance depending on the wavelength λ [3], [4]. The 
array factor (AF) is directly related to the number of antennas 
and the spacing between them. Although this arrangement is 
commonly used, its AF depends heavily on the topology: 
hence, they lack robustness in hostile environments [5]. To 
overcome the dependence on the topology, random antenna 
array (RAA) was introduced. In this array, the antennas are 
placed randomly. While this arrangement was able overcome 
dependence of the AF on the array topology, it suffers from the 
high side lobe level (SLL) [6]. 

Fractals were introduced by B.B. Mandelbrot during 1970’s. 
The fascinating feature of a fractal is that it can replicate itself 
indefinitely without losing its original shape. The iterated 
function system (IFS) is a method that is used to generate 
fractals [7], [8]. In this method, the required generator shape is 
created and then iterated to create the fractal. This feature 
attracted the designers to develop new array topologies that are 
called fractal antenna arrays (FAA). These arrays cannot be  
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Fig. 1. Uniform planar phased array antenna. 
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classified as UAAs nor RAAs because fractals inherit the 
spacing from their predecessors and scale them down 
depending on the iteration level. This arrangement may inherit 
the low SLL of the UAA and the robustness of the RAA. 

Many efforts were devoted to investigate this new trend in 
antenna array. Impressive studies of fractal arrays are given in 
[9]-[14]. 

FAAs found their way into many wireless communication 
applications [15]-[20] because of their flexibility and the 
property of multiple frequency tuning. 

II. Array Factor 

For any phased antenna array, the radiation pattern, at the far 
field (Fraunhofer), is the multiplication of two main parts:  
the element radiation pattern and array factor (AF). The array 
factor contains the dependence on r, φ, and θ which are the 
distance, the azimuth angle, and the elevation angle, 
respectively, between the array and the observer. Consider the 
UAA shown in Fig. 1 having N×M isotropic elements along 
the x, y directions. 

The far electric field generated by a single element is [21], 
[22] 

( ) ( ) ( )
exp
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4n n

jkr
E r j f
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ωμ θ ϕ

π
−

≈ −           (1) 

and the angular-dependent vector is 
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element
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where ( )n nJ r′  is the electric current density of the n-th 
element, nr′ is the distance of the n-th element from the origin, 
rn is the distance between the observer and the origin, k is the 
freespace wave number 2π/λ, ω is the angular frequency, and μ 
is the magnetic permeability. 

The total electric field for the N×M elements using 
superposition is 

,

( ) ( ).
N M

n
n
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For identical uniformly spaced elements, ( , )nf θ ϕ is 

( , ) ( , ),n nf I fθ ϕ θ ϕ=                (4) 

where In is the complex excitation of the n-th element and 
( , )f θ ϕ  is the pattern function.  
Combining the above equations and using the spherical 

coordinates, we have 

Element radiation pattern

exp( )( ) ( , ) ( , ),
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where AF is the array fctor which is 

,

( , ) ( , ) exp( cos( )),n n n
N M

AF I jkrθ ϕ θ ϕ ξ= ∑        (6) 

where cos( ) sin( )sin( )cos( ) cos cos .n n n nξ θ θ ϕ ϕ θ θ= − +  
The array factor is the part that is used to steer the main lobe 

to the required direction and to measure the directivity of the 
array. For UAA, if the distances are changed or elements are 
lost, AF will change dramatically. 

III. Fractal Arrays and Multifrequency Tuning 

Mandelbrot has pointed out that fractals are bounded and 
seem to be the result of a favorite construction principle in 
nature. Mathematically, an iterated function system (IFS) is a 
method used for constructing fractals; the resulting fractals are 
always self-similar. 

To define a fractal, let us start with an affine map defined as 

( ) : ,L bχ χℑ = +                  (7) 

where L is a linear map and 2b ∈ℜ . The above relation can 
be written using matrix notation as [7], [8] 
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where 2
11 12 21 22 1 2 1 2, , , , , , ,l l l l b bχ χ ∈ℜ . Using homogenous 

coordinates, (8) can be represented in matrix format as 
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To generate an equilateral Sierpinski fractal, we let 
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Fig. 2. Equilateral Sierpinski fractal. 
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The resulting fractal is shown in Fig. 2. From Fig. 2, we can 
see that the distance between two points (which represent 
elements locations) are neither uniform nor random. At a single 
level, the spacings are equal but advancing to higher levels; the 
distances are divided by 2 for every iteration. This concept will  

 

be used to explain the principle of multifreqeuncy tuning. 
In section II, (6) represents the AF for the UAA. We need to 

modify this equation to describe AF for the FAA as [6], [23]-
[25] 

1
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where p represents the iteration level, ψ=kdsin( , )θ ϕ , δ is the 
excitation phase scale for each element, and GA(ψ) represents 
the generating AF. 

Letting p→±∞ then 
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with q is a natural number and qυ = . 
From (11), we can see that the AF is scaled by q factor. This 

scaling is analogous to scaling the tuning frequency such that 

0
q

qf fδ ±
± = . 

IV. Simulation and Results 

Recalling Fig. 1 and (6) (which is in spherical coordinates), 
 

 

Fig. 3. Uniform antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D Cartesian, (e) array 
factor in 3D spherical, and (f) array factor in Cartesian top view. 
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Fig. 4. Random antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D Cartesian, (e) array
factor in 3D spherical, and (f) array factor in Cartesian top view. 
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we can refomulate (6) to be in Cartesian coordinates as follows 
[23]. For the inter-elements distances on the x, y axes, we have 

sin( ) cos( )dx k θ ϕ= and sin( )sin( ),dy k θ ϕ=      (12) 

[ ]
,

( , ) ( , ) exp ( ) .n n n n n
N M

AF x y I x y j dx x dy y= ⋅ + ⋅∑    (13) 

The general form for AF which is given by (13) can be used 
for any array geometry. 

The array will be assumed to have 1,024 elements [26]-[31]; 
hence, the distributions will be as follows (fractal generators 
are given in the appendix). For the UAA, the response is 
shown in Fig. 3 with (N=32 and M=32) 

The elements can be distributed randomly forming RAA as 
shown in Fig. 4.  

The Sierpinski equilateral gasket antenna array is shown in 
Fig. 5 with its AF. The number of elements is 729 for 6 
iterations, which is the closest number to 1,024. As for 7 
iterations, the number of elements would be 2,187, which is far 
greater than1,024. 

The first proposed array is the Dragon fractal array. The 
number of elements is 729 for 6 iterations. As for 7 iterations, 
the number of elements also would be 2,187. The array and its 
AF is shown in Fig. 6. This array exhibits the lowest SLL, 
about 0.07, of the proposed arrays in this research. 

The second proposed array is the Flap fractal array. It has a 
wide angle seperating the main lobe from the side lobe. The 
number of elements is 1,024 using 5 iterations. The angle 
between the main and the side lobe is about 58º. The array and 
its response are shown in Fig. 7 

The last proposed array is the Twig array, which combines 
the features of the Dragon and the Flap arrays. It has a low SLL 
with a very wide angle seperating the side lobe from the main 
lobe. The number of elements is 1,024, which can be produced 
using 6 iterations. The array and its AF is shown in Fig. 8. 

The arrays responses are summerized in Table 1. 

V. Conclusion 

In this work, we have demonstrated that the FAAs are 
attractive replacements for the UAAs or the RAAs. They 
have multifrquency tuninng, and they are space compact so 
they require no further space to add extra elements like 
UAAs and RAAs. The three proposed arrays show a superior 
performance compared to the commonly used Sierpinski 
FAA. This superiority comes from the high concentration of 
elements. This concentration gave these arrays a low SLL or 
a wide seperation angle between the SLL and ML. This 
concentration should not exceed certain limit otherwise the 
benefits of the array will be lost and the behavior of the 
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Fig. 5. Sierpinski equilateral gasket antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D
Cartesian, (e) array factor in 3D spherical, and (f) array factor in Cartesian top view. 
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Fig. 6. Dragon fractal antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D Cartesian,
(e) array factor in 3D spherical, and (f) array factor in Cartesian top view. 
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aggregate would look like a single element. The reduction in 
SLL comes on the expense of widening the ML. Dragon 

requires more space than Sierpinski, while the Twig array 
requires the least area among all of them. Hence, Twig is 



854   Ahmed Najah Jabbar ETRI Journal, Volume 33, Number 6, December 2011 

 

Fig. 7. Flap fractal antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D Cartesian,
(e) array factor in 3D spherical, and (f) array factor in Cartesian top view. 
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Fig. 8. Twig fractal antenna array: (a) shape, (b) array factor in Cartesian, (c) array factor in polar, (d) array factor in 3D Cartesian,
(e) array factor in 3D spherical, and (f) array factor in Cartesian top view. 
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adequate for applications that are space limited, such as 
satellites, galactic surveillance, and space stations. 

We intend to further investigate other fractal shapes that may 
show other interesting performance. 
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Table 1. Comparison of array factor properties for antenna arrays.

Array 
Topology 

ML* beam 
width SLL SLL (dB) SLL angle

UAA 15.26º 0.218 –13.23 26º 

RAA 16.16º 0.238 –12.47 28º 

Sierpinski 17º 0.297 –10.55 26º 

Dragon 20.65º 0.07 –23.1 34º 

Flap 21.55º 0.354 –9.02 58º 
Twig 26.93º 0.104 –19.66 125º 

 
* Main lobe 

 
Appendix 

1. Sierpinski equilateral gasket 
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2. Dragon fractal 
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3. Flap fractal 
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