Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0163

77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module  

Kim, Sangkil (Department of Electronics Engineering, Pusan National University)
Rida, Amin (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Lakafosis, Vasileios (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Nikolaou, Symeon (Department of Electrical Engineering, Frederick University)
Tentzeris, Manos M. (School of Electrical and Computer Engineering, Georgia Institute of Technology)
Publication Information
ETRI Journal / v.41, no.2, 2019 , pp. 262-269 More about this Journal
Abstract
This paper introduces a low-cost, high-performance mmWave antenna array module at 77 GHz. Conventional waveguide transitions have been replaced by 3D CPW-microstrip transitions which are much simpler to realize. They are compatible with low-cost substrate fabrication processes, allowing easy integration of ICs in 3D multi-chip modules. An antenna array is designed and implemented using multilayer coupled-fed patch antenna technology. The proposed $16{\times}16$ array antenna has a fractional bandwidth of 8.4% (6.5 GHz) and a 23.6-dBi realized gain at 77 GHz.
Keywords
3D transition; automotive radar module; broadband transition; mmWave antenna array; proximity-coupled patch antenna;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Binzer, M. Klar, and V. Gross, Development of 77 GHz radar lens antennas for automotive applications based on given requirements, in Proc. ITG Conf. Antennas, Munich, Germany, Mar. 28-30, 2007, pp. 205-209.
2 World Health Statistics (WHO), Ten statistical highlights in global public health, WHO, Geneva, Switzerland, 2007.
3 K. Huang and D. Edwards, Millimetre wave antennas for gigabit wireless communications, John Wiley & Sons, Hoboken, NJ, 2008.
4 E. Kasper et al., High speeds in a single chip, IEEE Microw. Mag. 10 (2009), no. 7, 28-33.   DOI
5 W. Lee, J. Kim, and Y. J. Yoon, Compact two‐layer Rotman lens‐fed microstrip antenna array at 24 GHz, IEEE Trans. Ant. Propag. 59 (2010), no. 2, 460-466.   DOI
6 Y.-J. Park and W. Wiesbeck, Offset cylindrical reflector antenna fed by a parallel‐plate luneburg lens for automotive radar applications in millimeter‐wave, IEEE Trans. Ant. Propag. 51 (2003), no. 9, 2481-2483.   DOI
7 R. C. Daniels et al., 60 GHz wireless: up close and personal, IEEE Microw. Mag. 11 (2010), no. 7, 44-50.   DOI
8 S. Xiao, M. Zhou, and Y. Zhang, Millimeter wave technology in wireless PAN, LAN, and MAN, CRC Press, Boca Raton, FL, 2008.
9 D. Thompson et al., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz, IEEE Trans. Micro. Theory Tech. 52 (2004), no. 4, 1343-1352.   DOI
10 A. Margomenos, Y. Lee, and L. Katehi, Wideband Si micromachined transitions for RF wafer-scale packages, in Proc. Topical Meeting Silicon Monolithic Integr. Circuits RF Syst., Long beach, CA, Jan. 10-12, 2007, pp. 183-186.
11 A. Stark and A. Jacob, A Broadband vertical transition for millimeterwave applications, in Proc. Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 27-31, 2008, pp. 476-479.
12 Y.-G. Kim, K. W. Kim, and Y.-K. Cho, An ultra-wideband microstrip-to-CPW transition, in Proc. Int. Microw. Symp. Digest, Atlanta, GA, June 15-20, 2008, pp. 1079-1082.
13 W. Mayer et al., Eight‐channel 77‐GHz front‐end module with high‐performance synthesized signal generator for FMCW sensor applications, IEEE Trans. Micro. Theory Tech. 52 (2004), no. 3, 993-1000.   DOI
14 G. Zheng, J. Papapolymerou, and M. M. Tentzeris, Wideband coplanar waveguide RF probe pad to microstrip transitions without via holes, IEEE Microw. Compon. Lett. 13 (2003), no. 12, 544-546.   DOI
15 H.-B. Lee and T. Itoh, A systematic optimum design of waveguide‐to‐microstrip transition, IEEE Trans. Micro. Theory Tech. 45 (1997), no. 5, 803-809.   DOI
16 R. Alhalabi and G. Rebeiz, High‐efficiency angled‐dipole antennas for millimeter‐wave phased array applications, IEEE Trans. Ant. Propag. 56 (2008), no. 10, 3136-3142.   DOI
17 H. Mizuno et al., A forward-looking sensing millimeter-wave radar, in Proc. JSAE Ann. Congr., Japan, 2004, pp. 5-8.
18 S. Beer, G. Adamiuk, and T. Zwick, Novel antenna concept for compact millimeter‐wave automotive radar sensors, IEEE Ant. Wireless Propag. Lett. 8, (2009), 771-774.   DOI
19 M. Ettorre, et al., Single‐folded leaky‐wave antennas for automotive radars at 77 GHz, IEEE Ant. Wireless Propag. Lett. 9, (2010), 859-862.   DOI