DOI QR코드

DOI QR Code

77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module

  • Kim, Sangkil (Department of Electronics Engineering, Pusan National University) ;
  • Rida, Amin (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Lakafosis, Vasileios (School of Electrical and Computer Engineering, Georgia Institute of Technology) ;
  • Nikolaou, Symeon (Department of Electrical Engineering, Frederick University) ;
  • Tentzeris, Manos M. (School of Electrical and Computer Engineering, Georgia Institute of Technology)
  • Received : 2018.03.31
  • Accepted : 2018.09.02
  • Published : 2019.04.07

Abstract

This paper introduces a low-cost, high-performance mmWave antenna array module at 77 GHz. Conventional waveguide transitions have been replaced by 3D CPW-microstrip transitions which are much simpler to realize. They are compatible with low-cost substrate fabrication processes, allowing easy integration of ICs in 3D multi-chip modules. An antenna array is designed and implemented using multilayer coupled-fed patch antenna technology. The proposed $16{\times}16$ array antenna has a fractional bandwidth of 8.4% (6.5 GHz) and a 23.6-dBi realized gain at 77 GHz.

Keywords

References

  1. World Health Statistics (WHO), Ten statistical highlights in global public health, WHO, Geneva, Switzerland, 2007.
  2. K. Huang and D. Edwards, Millimetre wave antennas for gigabit wireless communications, John Wiley & Sons, Hoboken, NJ, 2008.
  3. E. Kasper et al., High speeds in a single chip, IEEE Microw. Mag. 10 (2009), no. 7, 28-33. https://doi.org/10.1109/MMM.2009.934691
  4. W. Lee, J. Kim, and Y. J. Yoon, Compact two‐layer Rotman lens‐fed microstrip antenna array at 24 GHz, IEEE Trans. Ant. Propag. 59 (2010), no. 2, 460-466. https://doi.org/10.1109/TAP.2010.2096380
  5. Y.-J. Park and W. Wiesbeck, Offset cylindrical reflector antenna fed by a parallel‐plate luneburg lens for automotive radar applications in millimeter‐wave, IEEE Trans. Ant. Propag. 51 (2003), no. 9, 2481-2483. https://doi.org/10.1109/TAP.2003.816387
  6. R. C. Daniels et al., 60 GHz wireless: up close and personal, IEEE Microw. Mag. 11 (2010), no. 7, 44-50. https://doi.org/10.1109/MMM.2010.938581
  7. S. Xiao, M. Zhou, and Y. Zhang, Millimeter wave technology in wireless PAN, LAN, and MAN, CRC Press, Boca Raton, FL, 2008.
  8. D. Thompson et al., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz, IEEE Trans. Micro. Theory Tech. 52 (2004), no. 4, 1343-1352. https://doi.org/10.1109/TMTT.2004.825738
  9. A. Margomenos, Y. Lee, and L. Katehi, Wideband Si micromachined transitions for RF wafer-scale packages, in Proc. Topical Meeting Silicon Monolithic Integr. Circuits RF Syst., Long beach, CA, Jan. 10-12, 2007, pp. 183-186.
  10. A. Stark and A. Jacob, A Broadband vertical transition for millimeterwave applications, in Proc. Eur. Microw. Conf., Amsterdam, Netherlands, Oct. 27-31, 2008, pp. 476-479.
  11. Y.-G. Kim, K. W. Kim, and Y.-K. Cho, An ultra-wideband microstrip-to-CPW transition, in Proc. Int. Microw. Symp. Digest, Atlanta, GA, June 15-20, 2008, pp. 1079-1082.
  12. W. Mayer et al., Eight‐channel 77‐GHz front‐end module with high‐performance synthesized signal generator for FMCW sensor applications, IEEE Trans. Micro. Theory Tech. 52 (2004), no. 3, 993-1000. https://doi.org/10.1109/TMTT.2004.823548
  13. G. Zheng, J. Papapolymerou, and M. M. Tentzeris, Wideband coplanar waveguide RF probe pad to microstrip transitions without via holes, IEEE Microw. Compon. Lett. 13 (2003), no. 12, 544-546. https://doi.org/10.1109/LMWC.2003.820638
  14. H.-B. Lee and T. Itoh, A systematic optimum design of waveguide‐to‐microstrip transition, IEEE Trans. Micro. Theory Tech. 45 (1997), no. 5, 803-809. https://doi.org/10.1109/22.575603
  15. R. Alhalabi and G. Rebeiz, High‐efficiency angled‐dipole antennas for millimeter‐wave phased array applications, IEEE Trans. Ant. Propag. 56 (2008), no. 10, 3136-3142. https://doi.org/10.1109/TAP.2008.929506
  16. S. Beer, G. Adamiuk, and T. Zwick, Novel antenna concept for compact millimeter‐wave automotive radar sensors, IEEE Ant. Wireless Propag. Lett. 8, (2009), 771-774. https://doi.org/10.1109/LAWP.2009.2026917
  17. M. Ettorre, et al., Single‐folded leaky‐wave antennas for automotive radars at 77 GHz, IEEE Ant. Wireless Propag. Lett. 9, (2010), 859-862. https://doi.org/10.1109/LAWP.2010.2071850
  18. H. Mizuno et al., A forward-looking sensing millimeter-wave radar, in Proc. JSAE Ann. Congr., Japan, 2004, pp. 5-8.
  19. T. Binzer, M. Klar, and V. Gross, Development of 77 GHz radar lens antennas for automotive applications based on given requirements, in Proc. ITG Conf. Antennas, Munich, Germany, Mar. 28-30, 2007, pp. 205-209.

Cited by

  1. Development of novel Bi1−xSmxFeO3 based polymer-ceramic nanocomposite for microwave application vol.31, pp.1, 2019, https://doi.org/10.1007/s10854-019-02526-z
  2. High‐gain sub‐terahertz lens horn antenna with a metal guide vol.56, pp.14, 2019, https://doi.org/10.1049/el.2020.0860
  3. 3D-Printed Quasi-Cylindrical Bragg Reflector to Boost the Gain and Directivity of cm- and mm-Wave Antennas vol.21, pp.23, 2019, https://doi.org/10.3390/s21238014