• Title/Summary/Keyword: antagonistic plants

Search Result 140, Processing Time 0.026 seconds

Antagonistic Effect of Lactobacillus sp. Strain KLF01 Against Plant Pathogenic Bacteria Ralstonia solanacearum (세균성 시들음병에 대한 식물성 유산균(Lactobacillus sp.)의 저해효과)

  • Shrestha, Anupama;Choi, Kyu-Up;Lim, Chun-Keun;Hur, Jang-Hyun;Cho, Sae-Youll
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • An antagonistic bacterial strain KLF01 was isolated from rhizosphere of tomato and identified to be Lactobacillus sp. by biochemical and genetic analysis. This strain showed antagonism against the used plant pathogenic bacteria like Ralstonia solanacearum, (bacterial wilt), Xanthomonas axonopodis pv. citri, (Citrus canker), Xanthomonas campestris pv. vesicatoria (Bacterial spot), Eriwinia pyrifoliae (Shoot-blight) and Eriwinia carotovora subsp. carotovora group (Potato scab) through agar well diffusion method. In planta test done by drench application of strain KLF01 $(4{\times}10^8 cfu/ml)$ into the experimental plot containing tomato (Solanum lycopersicum L.) cultivar 'Lokkusanmaru' and red pepper (Capsicum annuum L.) cultivar 'Buja' plants, in pot test post-inoculated with the plant pathogenic bacteria, R. solanacearum significantly reduced the disease severity, compared to the non-treated plants.

Biological Control of Strawberry Bud Rot Caused by Rhizoctonia solani AG2-1 with Antagonistic Microorganism (길함미생물에 의한 시설재배 딸기 눈마름병의 생물학적 방제)

  • 신동범;소림기언;이준탁
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.112-118
    • /
    • 1994
  • Forth microbial isolates out of 167 isolates from the soil of controlled cultivation areas inhibited mycelial growth of Rhizoctonia solani AG2-1 causing the strawberry bud rot in vitro. Among the isolates, Kr013 and Kr020 showed suppressive effect to R. solani AG2-1 on seedlings of chinese cabbage treated by root immersion, charcoal carrier granule and drenching on 1.0% infested soil in pot. Furthemore, the corresponding effect was also revealed when the charcoal carrier granule of the isolates were treated on the seedling of strawberry that were planted on the planting hole in pot. To examine the effects of biological control in green house, it had been tested the infection rates by using two different treatments. First, the strawberry runner were planted on the nursery soil mixed with 20% charcoal carrier granule of Kr013 and Kr020 isolate respectively, and grown for 20 days before transplanting. Then the young plants form the mother plant were separated and transplanted on the 1.0% infested soil. Another method was that the charcoal carrier of Kr013 and Kr020 isolates applied to planting hole of 1.0% infested soil just before transplanting. Then the young plants were grown for 20 days on the sterilized nursery soil before transplanting. From the results, the effects of biological control was significantly higher on former treatment (e.g. the infection rates were 7.3 and 5.7%, respectively) than on the latter treatment (e.g. the corresponding value were 16.7 and 15.7%, respectively). The antagonistic isolates of Kr013 and Kr020 were respectively identified as Pseudomonas cepacia with the similarity of 55.0% and 60.0% by using the Biolog GN Microplate system.

  • PDF

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Antagonistic and growth promotion potential of endophytic bacteria of mulberry (Morus spp.)

  • Pratheesh Kumar, Punathil Meethal;Ramesh, Sushma;Thipeswamy, Thipperudraiah;Sivaprasad, Venkadara
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • Endophytes provide multifarious benefits such as promotion of plant growth and yield, suppression of phyto-pathogens, phosphate solubilising and fixation nitrogen. A study has been carried out to explore growth promotion and antifungal activities of endophytes of mulberry (Morus spp.). Endophytic bacteria were isolated from mulberry plants and studied their cultural, morphological characters, growth promotion as well as their antifungal activity against Rhizoctonia bataticola and Fusarium oxysporum , two mulberry root rot associated pathogens. Except two isolates, all bacteria were colourless and the colony size of eight isolates was small. The margin of five isolates was irregular and the consistency of three isolates was creamy, six isolates was slimy and one was mucoid. Texture of seven isolates was convex and others were flat. Eight isolates were gram positive and the rest Gram negative, five were cocci and others were bacilli (rod shaped). Four isolates were motile and all were catalase positive and only three isolates were oxidase positive. Spore staining was positive only for two isolates. The growth promotion study showed that there was significant difference in root length and seedling length. The antagonistic effect of the bacterial isolates was tested against R. bataticola showed significant (p <0.05) influence of the bacteria, days after inoculation and their interaction on the inhibition of fungal growth. The isolate En-7 completely inhibited the fungus followed by En-5 (66.67%). The bacterial isolates significantly (p <0.05) inhibited growth of F. oxysporum in PDA. The mean inhibition was higher (70.45%) in case of En-7 followed by En-8 (68.65%) and En-10 (66.44%). The study reveals that some endophytic bacteria associated with mulberry have growth promotion and antifungal activity and could be explored for promotion of mulberry growth and managing root rot disease.

Plant Growth Promotion and Antagonistic Activities Against Anthracnose of Burkholderia sp. LPN-2 Strain

  • Kim, WonChan;Seo, SangHyun;Lee, ChangHee;Park, JunHong;Kang, SangJae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • A rhizobacterium LPN-2, which showed strong antifungal activity and auxin producing ability, was isolated from a farmland in North Gyeongsang Province, South Korea. Based on analysis of the 16S rDNA sequence, strain LPN-2 was identified as a novel strain of Burkholderia and was designated as Burkholderia sp. LPN-2. In vitro experiments showed that the isolated stain LPN-2 significantly produced auxin within 48 hr incubation. In order to check for PGPR function we performed in vivo growth promoting test in different crops, including mung bean, pea and cabbage. Application of Burkholderia sp. LPN-2 showed dramatic growth promoting effect on all the tested plants. We also confirmed siderophore and cellulase productions by Burkholderia sp. LPN-2 using CAS blue agar and CMC plate test. Further treatment with LPN-2 and the crude culture broth was effective in suppressing anthracnose in vitro test and also reduced incidence and severity of anthracnose in apple and pepper. Taken together, we conclude that Burkholderia sp. LPN-2 might be used as organic fertilizer for effective crop production in organic farming.

Biocontrol of Citrus Canker Disease Caused by Xanthomonas citri subsp. citri Using an Endophytic Bacillus thuringiensis

  • Islam, Md. Nurul;Ali, Md. Sarafat;Choi, Seong-Jin;Hyun, Jae-Wook;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.486-497
    • /
    • 2019
  • Citrus canker is a devastating disease of citrus caused by Xanthomonas citri subsp. citri (Xcc). A total of 134 endophytic bacteria were isolated from various gymnospermic and angiospermic plants. They were screened for their antagonistic activities against three wild-type and six streptomycin-resistant Xcc strains. TbL-22 and TbL-26, both later identified as Bacillus thuringiensis, inhibited all the wild and resistant Xcc strains. TbL-22 exerted the highest antagonistic activity against XccW3 and XccM6 with inhibition zones of $20.64{\pm}0.69$ and $19.91{\pm}0.87mm$, respectively. Similarly ethyl acetate extract of TbL-22 showed highest inhibition zones $15.31{\pm}2.08$ and $19.37{\pm}3.17mm$ against XccW3 and XccM6, respectively. TbL-22 reduced canker incidence on infected leaves by 64.05% relative to positive controls. Scanning electron microscopy revealed that the cell membranes of Xcc treated with ethyl acetate extract of TbL-22 were ruptured, lysed, and swollen. B. thuringiensis TbL-22 can effectively and sustainably controls streptomycin-resistant citrus canker.

Antagonistic Activity of Siderophore-Producing Bacteria from Black Rice Rhizosphere against Rice Blast Fungus Pyricularia oryzae

  • Nabila, Nabila;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • Rice blast caused by Pyricularia oryzae, which is a major threat to food security worldwide, markedly decreases the yield of rice. Some rhizobacteria called 'plant growth-promoting rhizobacteria' inhibit plant pathogens and improve plant growth by secreting iron-chelating siderophores. The decreased availability of iron adversely affects the survival of pathogens, especially fungal pathogens, in the rhizosphere. This study aimed to determine the morphological diversity of siderophore-producing bacteria, analyze the type of siderophores produced by the bacteria, and examine their growth-inhibitory activity against Pyricularia oryzae. The rhizobacteria were isolated from the rhizosphere of Sembada Hitam variety of black rice plants in Pakem, Sleman, Yogyakarta, Indonesia. In total, 12 distinct isolates were screened for the production of siderophores. It was found that 9 out of 12 bacteria produced siderophore and most of them were Gram positive bacteria. The best siderophore-producing isolates with different type of siderophore were used in further studies. The IS3 and IS14 isolates were found to be the best siderophore producer that produced hydroxamate and mixed type of hydroxamate-carboxylate type of siderophore, respectively. In the dual culture assay, IS14 showed a strong antagonistic effect against Pyricularia oryzae by the 81.17% inhibition.

Biological Control of Perilla Culture by Burkhoderia sp. AK-17 (Burkhoderia sp. AK-17에 의한 잎들깨 재배의 생물학적 조절)

  • Kim, Keun-Ki;Kim, Yong-Kyun;Son, Hong-Joo;Choi, Young-Whan;Kang, Kyu-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • There are various crop diseases in green houses that are caused by the cultural environments, especially high temperature and moisture. To solve the forementioned problems, farmers are overusing agricultural chemicals, causing other damages by the chemical residue. In this study, antagonistic bacteria as biological control agents were isolated to produce the environmentally-friendly crops for use in green houses. Eighteen species of antagonistic bacteria were totally isolated from the soil and plants in the Perilla fields, and AK-17 showed the highest activity among the isolates. According to the results of anti-fungal spectrum against several pathogens by AK-17, the antagonism effect of the isolates was remarkable against grey mold rot by Botrytis cinerea, sclerotinia rot by Sclerotnia sclerotiorum, and stem rot by Rhizoctonia solini. To evaluate the biological control effects of the isolates against the major diseases of Perilla, studies were carried out to evaluate the preventive and the curative effects of the diseases throughout the pot experiments. According to the forementioned experiments, the preventive and the curative effects by the isolates against sclerotinia rot were respectively showed as 55% and 92%. For the grey mold rot, those were 40% and 78%, respectively. As to the evaluation of the growth-promoting effect by AK-17, the length and the biomass of the tested plants were increased to 120% and to 164%, respectively. For the leaf numbers and area were respectively increased to 120% and 220%. Furthermore, AK-17 was identified as Burkhoderia sp. according to the results of physiological properties and genetic methods.

Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi (식물 근권에서 분리한 미생물의 식물병원성 진균에 대한 길항효과 검정)

  • Kim, Yun Seok;Kim, Sang woo;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.36-47
    • /
    • 2016
  • This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.

Biological Control of Phytophthora Blight and Anthracnose Disease in Red-pepper Using Bacillus subtilis S54 (Bacillus subtilis S54 균주를 이용한 고추 역병과 탄저병의 생물학적 방제)

  • Lee, Gun-Woong;Kim, Myung-Jun;Park, Jun-Sik;Chae, Jong-Chan;Soh, Byoung-Yul;Ju, Jae-Eun;Lee, Kui-Jae
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Phytophthora blight and anthracnose disease caused by Phytophthora capsici and Collectotrichum gloeosporioides are the most important devastating diseases of red pepper plants, worldwide. Five different bacterial isolates were isolated from the red pepper rhizosphere and non-rhizosphere soil and subsequently tested for antagonistic activity against P. capsisi and C. gloeosporioides. The area of the inhibition zone was taken as a measure for antagonistic activity. Among the 5 isolates tested, S54 exhibited a maximum antagonistic activity under in vitro and in vivo conditions. In greenhouse studies the isolate has successfully reduced the disease symptom. Protect value was 80.8% (Phytophthora blight) and 81.9% (Anthrancnose disease), whereas the infection rate of control plants was 21.3% and 23.2%. Based on the 16S rDNA sequence and API 50CHB Kit analysis the most effective isolate was identified as Bacillus subtilis. The results of the study indicate that the stratin S54 could be used as an potential biological control of Phytophthora blight and anthracnose disease of red pepper.