• Title/Summary/Keyword: anodized aluminum

Search Result 113, Processing Time 0.028 seconds

Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

  • Son, In-Joon;Nakano, Hiroaki;Oue, Satoshi;Kobayashi, Shigeo;Fukushima, Hisaaki;Horita, Zenji
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.275-281
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

A Study on the Charactristics od Hard Anodizing fikm of Al-Si Pistom Alloys (Al-Si계 피스톤 합금의 경질양극산화피막의 특성에 관한 연구)

  • 문종환;이진형;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Al-Si piston alloys such as AlS10CuMg have been anodized to examine apossibility of forming a hard film aat relatively higher temperatures compard with those in conventional sulfuric acid processes. Three types of electrolytes have been employed in this study ; electrolyte A(15% H2SO4, $0^{\circ}C$), electrolyte B(12% H2SO4, 1% oxalic, $10^{\circ}C$), electrolyte C(tartaric acid 125g/L+oxalic 75g/L+aluminum sulfate 225g/L, $25^{\circ}C$). Hard anodisine process in electrolyte B at a current density of 1.54A/dm2 produced a harder film of VHN 396 at a relatibely low film forming voltage compared with those obtained in other electrolyte at equivalent current density. A liner relationship between hardness and abrasion resistance exists for Al-Si piston alloys. The hardness of anodized film decreasees with increasing silicon content in Al-Si alloys and also with bath temperature. The film hardeness of Na-modified alloy os higher than that of P-modified alloy due to its finer microstructre. The film on the silicon phase in Al-Si alloys is observed to be formed by lateral growth of oxide film nucleated at surroundings.

  • PDF

Well-Aligned Nano-Sized Pores Using Aluminum Thin Film Fabricated by Aluminum Anodized Oxidation Method (알루미늄 박막을 이용하여 양극산화법으로 제작한 규칙적으로 정렬된 미세기공)

  • Han, Ga-Ram;Yun, Tae-Uk;Kang, Min-Ki;NamGung, Hyun-Min;Kim, Chang-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.207-207
    • /
    • 2010
  • 알루미늄 양극산화 기술은 저가로 공정이 가능하고, 경제적이며 규칙적인 배열의 나노 미터 크기의 미세기공을 형성할 수 있다는 장점을 가지고 있다. 인가전압, 양극산화 용액의 종류, 용액의 농도 및 온도 등의 양극산화 조건을 변화시킴에 따라 나노 기공의 직경 및 길이, 밀도 조절이 용이하다. 알루미늄 판 (aluminum plate)을 이용한 양극산화 기술은 상대적으로 많이 알려져 있으나 알루미늄 박막을 이용한 양극산화기술은 아직도 확립되어 있지 않다. 본 실험에서는 실리콘 기판에 Al을 $5000{\AA}$$8000{\AA}$으로 증착시켜서 기판으로 이용하였다. 아주 얇은 두께의 Al은 작은 변화에도 민감하게 반응하기 때문에 공정 변수인 온도와 전압의 정밀한 제어가 되어야 나노 기공의 크기 조절이 가능한 것을 확인하였다.

  • PDF

Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

  • Sakairi, M.;Shimoyama, Y.;Nagasawa, D.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.168-172
    • /
    • 2008
  • A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in $0.5kmol/m^3$ $H_3BO_4/0.05kmol/m^3$ $Na_2B_4O_7$ with $0.01kmol/m^3$ NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion.

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

An aluminum-based reflective nanolens array that enhances the effectiveness of a continuous-flow ultraviolet disinfection system for livestock water

  • Changhoon Chai;Jinhyung Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.258-270
    • /
    • 2023
  • Climate change has worsened droughts and floods, and created conditions more likely to lead to pathogen contamination of surface water and groundwater. Thus, there is a growing need to disinfect livestock water. Ultraviolet (UV) irradiation is widely accepted as an appropriate method for disinfecting livestock water, as it does not produce hazardous chemical compounds and kills pathogens. However, UV-based disinfection inevitably consumes electricity, so it is necessary to improve UV disinfection effectiveness. Aluminum-based reflective nanolens arrays that enhanced the effectiveness of a continuous-flow UV water disinfection system were developed using electrochemical and chemical processes, including electropolishing and two-step anodization. A continuous UV disinfection system was custom designed and the parts were produced using a three-dimensional printer. Electropolished aluminum was anodized at 40 and 80 V in 0.3 M oxalic acid, at 120 and 160 V in 1.0 M phosphoric acid, and at 200 and 240 V in 1.5 M citric acid. The average nanolens diameters (D) of the aluminum-based reflective nanolens arrays prepared using 40, 80, 120, 160, 200, and 240 V anodization were 95.44, 160.98, 226.64, 309.90, 296.32, and 339.68 nm, respectively. Simple UV reflection behind irradiated water disinfected Escherichia coli O157:H7 in water more than did the non-reflective control. UV reflection and focusing behind irradiated water using an aluminum-based reflective nanolens array disinfected E. coli O157:H7 more than did simple UV reflection. Such enhancement of the UV disinfection effectiveness was significantly effective when a nanolens array with D 226.64 nm, close to the wavelength of the irradiated UV (254 nm), was used.

Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor (Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구)

  • Jin, Chang-Soo;Lee, Yong-Sung;Shin, Kyung-Hee;Kim, Jong-Huy;Yoon, Soon-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Capacitance of a hybrid capacitor that has characteristics of both electrolyte capacitor and supercapacitor is determined by anode surface covered with oxide layer. In this study, optimal condition processes for anode to fabricate a high voltage hybrid capacitor was investigated. We mixed aluminum powder having mean particle size of $40{\mu}m$ with NaCl powders at weight ratio of 4 : 1 and prepared a disk type electrode after annealing at various temperature. After dissolving NaCl in $50^{\circ}C$ distilled water, heat treatment, eletropolishing, chemical treatment, and the first and the second etching of Al disk were conducted. In each process, capacitances and resistances of the disk measured by ac-impedance analyzer were compared to find its optimum treatment condition. Also, the surface morphology of treated disks were observed and compared by SEM. After the second etching, the Al disk was anodized at 365V to make an anode of hybrid supercapacitor that can be operated at 300V, Capacitance and resistance of the anodized Al disk electrode was compared with those of commercialized conventional aluminum electrolytic capacitor at different frequencies.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of Addition of Sulfuric Acid on the Etching Behavior of Al foil for Electrolytic Capacitors II. Microstructures of Dielectric Layers and AC Impedance Analysis (전해 콘텐사용 알루미늄박의 애칭특성에 미치는 황산첨가의 영향 II. 유전층의 조직 및 임피던스 분석)

  • Kim, Seong-Gap;Yu, In-Jong;Sin, Dong-Cheol;O, Han-Jun;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Aluminium foil for electrolytic capacitors was anodized at the voltage of 100V and 140V for 10 minutes in ammonium adipate solution to form aluminum oxide layer on aluminum substrate as an dielectric film. The thickness, the stoichiometry and the crystal structure of the layer were investigated by using RBS and TEM . In addition EIS technique was employed to study the effects of addition of sulfuric acid on the increment of the foil surface area. It was found that the thickness values of the layers anodized at 100V and 140V were about 130 nm and 190 nm respectively and the stoichiometry of the elements of aluminum and oxygen was 2:3. The anodic oxide layer was shown to be amorphous. but the structure irradiated with electron beam resulted in the transformation into crystalline structure of $${\gamma}$-Al_2$$O_3$ . From a comparison of the impedance results and the capacitance variation to investigate the ef- fects of sulfuric acid addition to the etching bath of hydrochloric acid, the EIS techinque could be useful to analyze the capacitance variation.

  • PDF

Thermal Emission Effect of Electronic Parts Using Carbon Materials (탄소물질을 이용한 전자부품의 열 방출효과)

  • Eom, Woon-Yong;Roh, Jae-Seung;Seo, Seung-Kuk;Ahn, Jai-Sang;Kang, Dong-Su;Kim, Suk-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.204-209
    • /
    • 2010
  • Recent high efficiency electronic devices have been found to have heat emission problems. As for LEDs, an excessive increase in the device temperature causes a drop of the luminous efficiency and circuit lifetime. Therefore, heat release in the limited space of such electronic parts is very important. This is a study of the possibility of using a coating of carbon materials as a solution for the thermal emission problem of electronic devices. Powdered carbon materials, cokes, carbon blacks, amorphous graphite, and natural flakes were coated with an organic binder on an aluminum sheet and the subsequent thermal emissivity was measured with an FT-IR spectrometer and was found to be in the range of $5{\sim}20\;{\mu}m$ at $50^{\circ}C$. The emissivity of the carbon materials coated on the aluminum sheet was shown to be over 0.8 and varied according to carbon type. The maximum thermal emissivity on the carbon black coated-aluminum surface was shown to be 0.877. The emissivity of the anodized aluminum sheets that were used as heat releasing materials of the electronic parts was reported to be in the range of 0.7~0.8. Therefore, the use of a coating of carbon material can be a potential solution that facillitates heat dissipation for electronic parts.