Browse > Article

Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments  

Sakairi, M. (Graduate School of Engineering, Hokkaido University)
Shimoyama, Y. (Graduate School of Engineering, Hokkaido University)
Nagasawa, D. (Nippon light metal co. ltd.)
Publication Information
Corrosion Science and Technology / v.7, no.3, 2008 , pp. 168-172 More about this Journal
Abstract
A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in $0.5kmol/m^3$ $H_3BO_4/0.05kmol/m^3$ $Na_2B_4O_7$ with $0.01kmol/m^3$ NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion.
Keywords
galvanic corrosion; aluminum; anodizing; electrochemical noise; chloride ions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Baba, Oxide film by electrolysis, Maki-Syoten, 28, (1996)
2 Y. Takashima, K. Miwa, M. Sakairi, and H. Takahashi, J. Surf. Fin. Soc. Jpn., 51, 625 (2000)   DOI   ScienceOn
3 U. Bertocci, C. Gabrielli, F. Huet, and M. Keddam, J. Electrochem. Soc., 144, 31 (1997)   DOI
4 U. Bertocci, C. Gabrielli, F. Huet, M. Keddam, and P Rousseau, J. Electrochem. Soc., 144, 37 (1997)   DOI
5 T. Tsuru and M. Yaginuma, Zairyo-to-Kankyo, 52, 488 (2003)   DOI
6 Y. Yoneda and H. Inoue, Zairyo-to-Kankyo, 52, 495 (2003)
7 S. -M. Moon, M. Sakairi, and H. Takahashi, J. Electrochem. Soc., 150, B473 (2003)   DOI   ScienceOn
8 K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai, and S. Yamaguchi, J. Electroanal. Chem., 473, 250 (1999)   DOI   ScienceOn
9 H. Yashiro, M. Kumagai, and M. Kumagai, Zairyo-to-Kankyo, 52, 466 (2003)   DOI
10 M. Sakairi, P. Skeldon, G. E. Thompson, G. C. Wood, andens, Electrochem. Soc. Proc., 99, 171 (1999)
11 T. Yanagishita, Y. Tomabechi, K. Nishio, and H. Masuda, Langmuir, 20, 554 (2004)   DOI   ScienceOn
12 M. Sakairi, Z. Kato, S. Chu, H. Takahahshi, Y. Abe, and N Katayama, Electrochemistry, 71, 920 (2003)
13 Y. Ioti, S. Take, and Y. Okuyama, Zairyo-to-Kankyo, 52, 471 (2003)   DOI
14 H. Masuda, F. Matsumoto, and K. Nishio, Electrochemistry, 72, 389 (2004)
15 T. Kikuchi, M. Sakairi, H. Takahashi, Y. Abe, and N. Katayama, Surface and coatings technology, 169, 199 (2003)   DOI   ScienceOn
16 T. Kikuchi, M. Sakairi, and H. Takahashi, J. Electrochem. Soc., 150, C567 (2003)   DOI
17 H. Inoue, M. Kinoshita, and Y. Maeda, Zairyo-to-Kankyo, 52, 483 (2003)   DOI
18 M. Sakairi, P. Skeldon, G. E. Thompson, G. C. Wood, and K. Stevens, Proc. of ASST 2000, 410 (2000)
19 T. Kikuchi, M. Sakairi, H. Takahashi, Y. Abe, and N. Katayama, J. Electrochem. Soc., 148, C740 (2001)   DOI   ScienceOn
20 M. Sakairi and Y. Shimoyama, submitted to J. JSEM
21 M. Sakairi and Y. Shimoyama, Electrochemistry, Electrochemistry, 74, 458 (2006)   DOI   ScienceOn
22 Y. Li, S. Shigyo, M. Sakairi, H. Takahashi, and M. Seo, J. Electrochm. Soc., 144, 866 (1997)   DOI
23 S. Z. Chu, M. Sakairi, and H. Takahashi, K. Shimamura and Y. Abe, J. Electrochme. Soc., 147, 2181 (2000)   DOI   ScienceOn
24 F. Matsumoto, K. Nishio, T. Miyasaka, H. Masuda, Jpn. J. App. Phys. 2-Letters & Express Letter, 43(5A), L640 (2004)   DOI