• Title/Summary/Keyword: anodic current density

Search Result 234, Processing Time 0.027 seconds

An Electrochemical Evaluation on the Corrosion Resistance of Heavy Anticorrosive Paint (중방식도료의 내식성에 관한 전기화학적 평가)

  • Sung Ho-Jin;Kim Jin-Kyung;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.519-525
    • /
    • 2005
  • An electrochemical evaluation on the corrosion resistance for heavy anticorrosive paint(DFT:25um) was carried out for 5 kinds of heavy anticorrosive paints such as high solid epoxy(HE), solvent free epoxy(SE). tar epoxy(TE), phenol epoxy(PE). and ceramic epoxy(CE). Corrosion current densities obtained by Tafel extrapolation method from anodic and cathodic polarization curves didn't correspond with the values obtained by AC impedance measurement, however, the values of polarization resistance obtained from the cyclic voltammogram showed a good tendency corresponding well with the values of AC impedance measurement. Futhermore there was a good correlation against the corrosion resistance evaluation between passivity current density of the anodic polarization curve and diffusion limiting current density of the cathodic polarization curve. And corrosion resistance increased with corrosion potential shifting to noble direction. From the results discussed above. HE and CE had a relatively good corrosion resistance than other heavy anticorrosive paints.

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Preparation of High-purity Porous Alumina Carrier for Gas Sensor (가스센서용 고순도 다공질 알루미나 담체의 제조)

  • 이창우;현성호;함영민
    • Fire Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.15-23
    • /
    • 1997
  • In this study, the alumina for gas sensor was prepared by anodic oxidation. It was stable thermally and chemically, and pore diameter and pore distribution was uniform. And the shape of pore was cylinderical. The aluminum plate was carried out by the thermal oxidation, chemical polishing and electropolishing pretreatment. The pore diameter, pore size distribution, pore density and thickness of alumina was observed with the change of reaction temperature, electrolyte concentration and current density. As a results, It was able to use for carrier because alumina which was prepared by anodic oxidationhas uniform pore size distribution.

  • PDF

Synthesis of Cyclitol Derivatives (Ⅲ). Electrolytic Oxidation of myo-Inositol (Cyclitol 유도체 합성에 관한 연구 (제3보)-myo-Inositol의 전해 산화-)

  • Joo Hwan Sohn;Chong Woo Nam;Yu Ok Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1971
  • To obtain the various kinds of inosose stereomers, the process of electrochemical oxidation is more effective than chemical oxidation of myo-inositol. So that myo-inositol aqueous solution was electrolyzed by platinum and lead peroxide anode to confirming the occurrence of electrochemical oxidation. The result is that myo-inosose-2 is producing with high yield comparatively by electrolytic oxidation of myo-inositol. Also we studied about the relation between the electrolytic current efficiency and electrolytic temperature and anodic current density. The current efficiency is rising with lowering of electrolytic temperature identically in both anode such as platinum and lead peroxide and also rising with increasing of anodic current density in platinum anode, but inversely in lead peroxide.

  • PDF

Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

  • Sakairi, M.;Shimoyama, Y.;Nagasawa, D.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.168-172
    • /
    • 2008
  • A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in $0.5kmol/m^3$ $H_3BO_4/0.05kmol/m^3$ $Na_2B_4O_7$ with $0.01kmol/m^3$ NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion.

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.

Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid (말릭산과 수산혼합욕에서 경질양극 산화처리)

  • Jeong, Yong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Journal of Surface Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

A Study on the Machining Characteristics of Electropolishing for Stainless Steel (스테인레스 강의 전해연마 가공특성에 관한 연구)

  • 박정우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.186-191
    • /
    • 1998
  • Electropolishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be recovered again. Electropolishing is normally used to remove a very thin layer of material on the surface of a metal component. The aim of this study is to determine the tendencies of electropolishing STS316L tubes in terms of current density, machining time, temperature, electrode gap and surface roughness.

  • PDF

Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse (Unipolar pulse를 이용하여 형성된 Al6061 합금 표면의 MAO 코팅의 표면 구조에 대한 연구)

  • Kim, Nam-youl;Park, Seung-Ho;Park, Ki-Youg;Choi, Jin-Sub
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • Herein, we investigated surface morphological characteristics of anodic films on Al6061 alloy prepared by unipolar pulsed Micro-arc oxidation (MAO) in a mixed solution of $Na_2SiO_3$ + KOH. The number and size of pores as well as craters on anodic alumina surface were studied as a function of different voltages, duty cycles and applied anodic current densities. The morphological characteristics of all samples were investigated by scanning electron microscopy, conforming that the most uniform surface morphology of MAO films on Al1050 alloy was obtained at high applied current density with low duty cycle.